DOI QR코드

DOI QR Code

Heat-induced coarsening of layer-by-layer assembled mixed Au and Pd nanoparticles

  • Shon, Young-Seok (Department of Chemistry and Biochemistry, California State University Long Beach) ;
  • Shon, Dayeon Judy (Department of Chemistry and Biochemistry, California State University Long Beach) ;
  • Truong, Van (Department of Chemistry and Biochemistry, California State University Long Beach) ;
  • Gavia, Diego J. (Department of Chemistry and Biochemistry, California State University Long Beach) ;
  • Torrico, Raul (Department of Physics and Astronomy, California State University Long Beach) ;
  • Abate, Yohannes (Department of Physics and Astronomy, California State University Long Beach)
  • Received : 2013.05.23
  • Accepted : 2014.01.29
  • Published : 2014.03.25

Abstract

This article shows the coarsening behavior of nanoparticle multilayers during heat treatments which produce larger metallic nanostructures with varying shapes and sizes on glass slides. Nanoparticle multilayer films are initially constructed via the layer-by-layer self-assembly of small and monodispersed gold and/or palladium nanoparticles with different compositions (gold only, palladium only, or both gold and palladium) and assembly orders (compounding layers of gold layers over palladium layers or vice versa). Upon heating the slides at $600^{\circ}C$, the surface nanoparticles undergo coalescence becoming larger nanostructured metallic films. UV-Vis results show a clear reliance of the layering sequence on the optical properties of these metal films, which demonstrates an importance of the outmost (top) layers in each nanoparticle multilayer films. Topographic surface features show that the heat treatments of nanoparticle multilayer films result in the nucleation of nanoparticles and the formation of metallic cluster structures. The results confirm that different composition and layering sequence of nanoparticle multilayer films clearly affect the coalescence behavior of nanoparticles during heat treatments.

Keywords

References

  1. Gavia, D. J., Maung, M.S. and Shon, Y.S. (2013), "Water-soluble Pd nanoparticles synthesized from w-carboxyl-S-alkanethiosulfate ligand precursors as unimolecular micelle catalysts", ACS Appl. Mater. Interf, 5(23), 12432-12440. https://doi.org/10.1021/am4035043
  2. Hrbek, J., Hoffmann, F.M., Park, J.B., Liu, P., Stacchiola, D., Hoo, Y.S., Ma, S., Nambu, A., Rodriguez, J.A. and White, M.G. (2008), "Adsorbate-driven morphological changes of a gold surface at low temperature", J. Am. Chem. Soc., 130(51), 17272-17273. https://doi.org/10.1021/ja8081268
  3. Jones, A.C., Berweger, S., Wei, J., Cobden, D. and Raschke, M.B. (2010), "Nano-optical investigations of the metal-insulator phase behavior of individual VO2 microcrystals", Nano Lett., 10(5), 1574-1581. https://doi.org/10.1021/nl903765h
  4. Karakouz, T., Holder, D., Goomanovsky, M., Vaskevich, A. and Rubinstein, I. (2009), "Morphology and refractive index sensitivity of gold island films", Chem. Mater., 21(24), 5875-5885. https://doi.org/10.1021/cm902676d
  5. Lee, S.J., An, H.H., Han, W.B., Kim, H.S. and Yoon, C.S. (2012), "Effect of temperature and humidity on coarsening behavior of Au nanoparticles embedded in liquid crystalline lipid membrane", Langmuir, 28(30), 10980-10987. https://doi.org/10.1021/la301124d
  6. Lohse, S.E., Dahl, J.A. and Hutchison, J.E. (2010), "Direct synthesis of large water-soluble functionalized gold nanoparticles using Bunte salts as ligand precursors", Langmuir, 26(10), 7504-7511. https://doi.org/10.1021/la904306a
  7. Nuno, Z., Hessler, B., Ochoa, J., Shon, Y.S., Bonney, C. and Abate, Y. (2011), "Nanoscale subsurface- and material-specific identification of single nanoparticles", Optics Express, 19(21), 20865-20875. https://doi.org/10.1364/OE.19.020865
  8. Oh, S.K., Kim, Y.G., Ye, H. and Crooks, R.M. (2003), "Synthesis, characterization, and surface immobilization of metal nanoparticles encapsulated within bifunctionalized dendrirmers", Langmuir, 19(24), 10420-10425. https://doi.org/10.1021/la0353778
  9. Sadeghmoghaddam, E., Gu, H. and Shon, Y.S. (2012), "Pd nanoparticle-catalyzed isomerization vs. hydrogenation of allyl alcohol: solvent-dependent regioselectivity", ACS Catal., 2(9), 1838-1845. https://doi.org/10.1021/cs300270d
  10. Sadeghmoghaddam, E., Lam, C., Choi, nand Shon, Y.S. (2011), "Synthesis and catalytic property of alkanethiolate-protected Pd nanoparticles generated from sodium S-dodecylthiosulfate", J. Mater. Chem. 21(2), 307-312. https://doi.org/10.1039/c0jm01761b
  11. Scarpettini, A.F. and Bragas, A.V. (2010), "Coverage and aggregation of gold nanoparticles on silanized glasses", Langmuir, 26(20), 15948-15953. https://doi.org/10.1021/la102937b
  12. Sharma, S., Kim, B. and Lee, D. (2012), "Water-soluble Pd nanoparticles capped with glutathione: synthesis, characterization, and magnetic properties", Langmuir, 28(45), 15958-15965. https://doi.org/10.1021/la303326u
  13. Shon, Y.S., Aquino, M., Pham, TV, Rave, D., Ramirez, M., Lin, K., Vaccarello, P., Lopez, G., Gredig, T. and Kwon, C. (2011), "Stability and morphology of gold nanoisland arrays generated from layer-by-layer assembled nanoparticle multilayer films: effects of heating temperature and particle size", J. Phys. Chem. C, 115(21), 10597-10605. https://doi.org/10.1021/jp110531x
  14. Srivastava, S. and Kotov, N.A. (2008), "Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires", Acc. Chem. Res., 41(12), 1831-1841. https://doi.org/10.1021/ar8001377
  15. Stewart, M.E., Anderton, C.R., Thompson, L.B., Maria, J., Gray, S.K., Rogers, J.A. and Nuzzo, R.G. (2008), "Nanostructured plasmonic sensors", Chem. Rev., 108(2), 494-521. https://doi.org/10.1021/cr068126n
  16. Sugden, M.W., Richardson, T.H. and Leggett, G. (2010), "Sub-10 $\Omega$ resistance gold films prepared by removal of ligands from thiol-stabilized 6 nm gold nanoparticles", Langmuir, 26(6), 4331-4338. https://doi.org/10.1021/la903410b
  17. Sun, H., Yu, M., Sun, X., Wang, G. and Lian, J. (2013), "Effective temperature sensing by irreversible morphology evolution of ultrathin gold island films", J. Phys. Chem. C, 117(7), 3366-3373. https://doi.org/10.1021/jp310405b
  18. Szunerlts, S., Das, M.R. and Boukherroub, R. (2008), "Short- and long-range sensing on gold nanostructures, deposited on glass, coated with silicon oxide films of different thicknesses", J. Phys. Chem. C, 112(22), 8239-8243. https://doi.org/10.1021/jp800478h
  19. Vaccarello, P., Tran, L., Meinen, J., Kwon, C, Abate, Y. and Shon, Y.S. (2012), "Characterization of localized surface plasmon resonance transducers produced from $Au_{25}$ nanoparticle multilayers", Colloid Surf, A, 402, 146-151. https://doi.org/10.1016/j.colsurfa.2012.03.041
  20. Wu, Z., Suhan, J. and Jin, R (2009), "One-pot synthesis of atomically monodisperse, thiol-functionalized $Au_{25}$ nanoclusters", J. Mater. Chem., 19(5), 622-626. https://doi.org/10.1039/b815983a
  21. Wu, Z. and Jin, R. (2009), "Stability of the two Au-S binding modes in $AU_{25}(SG)_{18}$nanoclusters probed by NMR and optical spectroscopy", ACS Nano, 3(7), 2036-2042. https://doi.org/10.1021/nn9004999
  22. Zamborini, F.P., Bao, L. and Dasari, R. (2012), "Nanoparticles in measurement science", Anal. Chem., 84(2), 541-576. https://doi.org/10.1021/ac203233q