참고문헌
- Akai, Y. and Saito, S. (2005), "Electronic structure, energetics and geometric structure of carbon nanotubes: A density-functional study", Physica E, 29, 555-559 https://doi.org/10.1016/j.physe.2005.06.026
- American Census bureau (2012), The 2012 Statistical abstract, World Primary Energy Consumption by Region and Type.
- Anderson, R.L. (1962), "Experiments on Ge-GaAs heterojunctions", Solid State Electron., 5, 341-344. https://doi.org/10.1016/0038-1101(62)90115-6
- Bai, X., Wang, H., Wei, J., Jia,, Y., Zhu, H., Wang, K. and Wu, D. (2012), "Carbon nanotube-silicon hybrid solar cells with hydrogen peroxide doping", Chem. Phys. Lett., 533, 70-73. https://doi.org/10.1016/j.cplett.2012.03.013
- Balasubramanian, K., Fan, Y., Burghard, M., Kern, K., Friedrich, M., Wannek, U. and Mews, A. (2004), "Photoelectronic transport imaging of individual semiconducting carbon nanotubes", Appl. Phys. Lett., 84, 2400-2402. https://doi.org/10.1063/1.1688451
- Barazzouk, S., Hotchandani, S., Vinodgopal, K. and Kamat, P. V. (2004) "Single-wall carbon nanotube films for photocurrent generation. a prompt response to visible-light irradiation", J. Phys. Chem. B, 108, 17015-17018. https://doi.org/10.1021/jp0458405
- Benham, A., Johnson, J. L., Choi, Y., Ertosun, M. G., Okyay, A. K., Kapur, P., Saraswat, K. C. and Ural, A. (2008), "Experimental characterization of single-walled carbon nanotube film-Si Schottky contacts using metal-semiconductor-metal structures", Appl. Phys. Lett., 92, 243116. https://doi.org/10.1063/1.2945644
- Benham, A., Radhakrishna, N. A., Wu, Z. and Ural, A. (2010), "Electronic properties of metal-semiconductor and metal-oxide semiconductor structures composed of carbon nanotube film on silicon", Appl. Phys. Lett., 97, 233105. https://doi.org/10.1063/1.3524194
- Card, H. C. (1977), "Photovoltaic properties of MIS-Schottky barriers", Solid State Electron., 20, 971-976. https://doi.org/10.1016/0038-1101(77)90206-4
- Castrucci, P., Scarselli, M., De Crescenzi, M., El Khakani, M.A., Rosei, F., Braidy, N. and Yi, J.H. (2004), "Effect of coiling on the electronic properties along single-wall carbon nanotubes" Appl. Phys. Lett., 85, 3857. https://doi.org/10.1063/1.1809277
- Castrucci, P., Tombolini, F., Scarselli, M., Speiser, E., Del Gobbo, S., Richter, W., De Crescenzi, M., Diociaiuti, M., Gatto E. and Venanzi, M. (2006), "Large photocurrent generation in multiwall carbon nanotubes", Appl. Phys. Lett., 89, 253107. https://doi.org/10.1063/1.2408648
- Castrucci, P., Scilletta, C., Del Gobbo, S., Scarselli, M., Camilli, L., Simeoni, M., Delley, B., Continenza, A. and De Crescenzi, M. (2011), "Light harvesting with multiwall carbon nanotube/silicon heterojunctions", Nanotechnology, 22, 115701. https://doi.org/10.1088/0957-4484/22/11/115701
- Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C. and Haddon, R.C. (1998), "Solution properties of single-walled carbon nanotubes", Science, 282, 95-98. https://doi.org/10.1126/science.282.5386.95
- Chen, L., Zhang, S., Changm L., Zeng, L., Yu, X., Zhao, J., Zhao, S., Xu, C. (2013), "Photovoltaic conversion enhancement of single wall carbon-Si heterojunction solar cell decorated with Ag nanoparticles", Electrochem. Acta, 93, 293-300. https://doi.org/10.1016/j.electacta.2013.01.068
- Collins, P.G., Bradley, K., Ishigami, M. and Zettl, A. (2000), "Extreme oxygen sensitivity of electronic properties of carbon nanotubes", Science, 287, 1801-1804. https://doi.org/10.1126/science.287.5459.1801
- Cowley, A.M. and Sze, S. M. (1965), "Surface states and barrier height of metal-semiconductor systems", J. Appl. Phys., 36, 3212-3220. https://doi.org/10.1063/1.1702952
- Del Gobbo, S., Castrucci, P., Scarselli, M., Camilli, L., De Crescenzi, M., Mariucci, L., Valletta, A., Minotti, A. and Fortunato, G. (2011), "Carbon nanotube semitransparent electrodes for amorphous silicon based photovoltaic devices ", Appl. Phys. Lett., 98, 183113. https://doi.org/10.1063/1.3588352
- Del Gobbo, S. Castrucci, P., Fedele, S., Riele, L., Convertino, A., Morbidoni, M., De Nicola, F., Scarselli, M., Camilli, L. and De Crescenzi, M. (2013), "Silicon spectral response extension through single wall carbon nanotubes in hybrid solar cells", J. Mater. Chem. C, 1, 6752-6758. https://doi.org/10.1039/c3tc31038h
- Di, J., Yong, Z., Zheng, X., Sun, B. and Li, B. (2013), "Aligned carbon nanotubes for high efficiency Schottky solar cells", Small, 9, 1367-1372. https://doi.org/10.1002/smll.201202995
- Dresselhaus, M.S., Dresselhaus, G., Sugihara, K., Spain, I.L. and Goldberg, H.A. (1988), "Graphite fibers and filaments", Springer Ser. Mater. Sci., 5, Springer, Berlin.
- Dresselhaus, M.S., Dresselhaus, G. and Eklund P. (1996), Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego.
- El Khakani, M.A., Le Borgne, V., Aissa, B., Rosei, F., Scilletta, C., Speiser, E., Scarselli, M., Castrucci, P. and De Crescenzi, M. (2009), "Photocurrent generation in random networks of multiwall-carbon nanotubes grown by an "all-laser" process", Appl. Phys. Lett., 95, 083114. https://doi.org/10.1063/1.3211958
- European Energy Council (2006), Renewable Energy Scenario To 2040: Half Of The Global Energy Supply From Renewables In 2040, European Renewable Energy Council.
- Fan, G., Fan, L., Li, Z., Bai, X., Mulligan, S., Jia, Y., Wang, K., Wei, J., Cao, A., Wu, D., Wei, B. and Zhu, J. (2012), "Hybrid effect of gas flow and light excitation in carbon/silicon Schottky solar cells", J. Mater. Chem., 22, 3330-3334. https://doi.org/10.1039/c2jm15938d
- Fanchini, G., Unalan H. E. and Chhowalla, M. (2006), "Optoelectronic properties of transparent and conducting single-wall carbon nanotube thin films", Appl. Phys. Lett., 88, 191919. https://doi.org/10.1063/1.2202703
- Feng, T., Xie, D., Lin, Y., Zang, Y., Ren, T., Song, R., Zhao, H., Tian, H., Li, X., Zhu, H. and Liu, L. (2011), "Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate", Appl. Phys. Lett., 99, 233505. https://doi.org/10.1063/1.3665404
- Freitag, M., Martin, Y., Misewich, J.A., Martel, R. and Avouris, Ph. (2003), "Photoconductivity of single carbon nanotubes ", Nano Lett., 3, 1067-1071. https://doi.org/10.1021/nl034313e
- Fujiwara, A., Matsuoka, Y., Suematsu, H., Ogawa, N., Miyano, K., Kataura, H., Maniwa, Y., Suzuki, S. and Achiba, Y. (2001), "Photoconductivity in semiconducting single-walled carbon nanotubes", Jpn. J. Appl. Phys., 40, L1229-L1231. https://doi.org/10.1143/JJAP.40.L1229
- Fuhrer, M.S., Nygard, J., Shih, L., Forero, M., Yoon, Y.G., Mazzoni, M.S.C., Choi, H.J., Ihm, J., Steven, M., Louie, G., Zettl, A. and McEuen, P.L. (2000), "Crossed nanotube junction", Science, 288, 494-497. https://doi.org/10.1126/science.288.5465.494
- Gabor, N.M., Zhong, Z., Bosnick, K., Park, J. and McEuen, P.L. (2009), "Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes", Science, 325, 1367-1371. https://doi.org/10.1126/science.1176112
- Galimberti, G., Ponzoni, S., Cartella, A., Cole, M.T., Hofmann, S., Cepek, C., Ferrini, G. and Pagliara, S. (2013), "Probing the electronic structure of multi-walled carbon nanotubes by transient optical transmittivity", Carbon, 57, 50-58. https://doi.org/10.1016/j.carbon.2013.01.030
- Green, M.A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E.D. (2012), "Solar cell efficiency tables (version 39)", Progress in photovoltaics: Research and Applications, 20, 12-20. https://doi.org/10.1002/pip.2163
- Grosso, G. and Pastori Parravacini, G. (2000), Solid State Physics, Academic Press, San Diego, CA, USA.
- Haacke, G. (1976), "New figure of merit for transparent conductors", J. Appl. Phys., 47, 4086-4089. https://doi.org/10.1063/1.323240
- Hamada, N., Sawada, S. and Oshiyama, A. (1992), "New one-dimensional conductors: graphitic microtubules", Phys. Rev. Lett., 68, 1579-1581. https://doi.org/10.1103/PhysRevLett.68.1579
- Ho, Y.H., Chang, C.P., Shyu, F.L., Chen, R.B., Chen, S.C. and Lin, M.F. (2004), "Electronic and optical properties of double-walled armchair carbon nanotubes ", Carbon, 42, 3159-3167. https://doi.org/10.1016/j.carbon.2004.07.027
-
Hoffert, M.I., Caldeira K., Jain, A.K., Haites, E.F., Harvey, L.D.D., Potter, S.D., Schelsinge, M.E., Schneider, S.H., Watts, R.G., Wigley, T.M.L. and Wuebbles, D.J. (1998), "Energy implications of future stabilization of atmospheric
$CO_{2}$ content", Nature, 395, 881-884. https://doi.org/10.1038/27638 - Hu, L., Hecht, D.S. and Gruner, G. (2004), "Percolation in transparent and conducting carbon nanotube networks", Nano Lett., 4, 2513-2517. https://doi.org/10.1021/nl048435y
- Jackson, R., Domercq, B., Jain, R., Kippelen, B. and Graham, S. (2008), "Stability of doped transparent carbon nanotube electrodes", Adv. Funct. Mater., 18, 2548-2554. https://doi.org/10.1002/adfm.200800324
- Jia, Y., Wei, J., Wang, K., Cao, A., Shu, Q., Gui, X., Zhu, Y., Zhuang, D., Zhang, G., Ma, B., Wang, L., Liu, W., Wang, Z., Luo, J. and Wu, D. (2008), "Nanotube-Silicon heterojunction solar cells", Adv. Mater, 20, 4594-4598. https://doi.org/10.1002/adma.200801810
- Jia, Y., Li, P., Wei, J., Cao, A., Wang, K., Li, Co, Zhuang, D., Zhu, H. and Wu, D. (2010), " Carbon nanotube films by filtration for nanotube-silicon heterojunction solar cells", Mater. Research Bull., 45, 1401-1405. https://doi.org/10.1016/j.materresbull.2010.06.045
- Jia, Y., Li, P., Gui, X., Wei, J., Wang, K., Zhu, H., Wu, D., Zhang, L., Cao, A. and Xu, Y. (2011a), "Encaspulated carbon nanotube-oxide-silicon solar cells with stable efficiency", Appl. Phys. Lett., 98, 133115. https://doi.org/10.1063/1.3573829
- Jia, Y., Cao, A., Bai, X., Li, Z., Zhang, L., Guo, N., Wei, J., Wang, K., Zhu, H., Wu, D. and Ajayan, P. M. (2011b), "Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping", Nano Lett., 11, 1901-1905. https://doi.org/10.1021/nl2002632
- Jia, Y., Cao, A., Kang, F., Li, P., Gui, X., Zhang, L., Shi, E., Wei, J., Wang K., Zhu, H. and Wu, D. (2012), "Strong and reversible modulation of carbon nanotube?silicon heterojunction solar cells by an interfacial oxide layer", Phys. Chem. Chem. Phys., 14, 8391-8396. https://doi.org/10.1039/c2cp23639g
- Jorio, A., Dresselhaus, M.S. and Dresselhaus, G. (2008) Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications, Springer, New York.
- Jung, Y., Li, X., Rajan, N.K., Taylor, A.D. and Reed, M.A. (2013), "Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells ", Nano Lett., 13, 95-99. https://doi.org/10.1021/nl3035652
- Kalita, G., Adhikari, S., Aryal, H.R., Afre, R., Soga, T., Sharon, M., Koichi, W. and Umeno, M. (2009), "Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes", J. Phys. D: Appl. Phys., 42, 115104. https://doi.org/10.1088/0022-3727/42/11/115104
- Kaskela, A., Nasibulin, A.G., Timmermans, M.Y., Aitchison, B., Papadimitratos, A., Tian, Y., Zhu, Z., Jiang, H., Brown, D.P., Zakhidov, A. and Kauppinen, E.I. (2010), "Aerosol-synthesized swcnt networks with tunable conductivity and transparency by a dry transfer technique", Nano Lett., 10, 4349-4355. https://doi.org/10.1021/nl101680s
- Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y. and Achiba, Y. (1999), "Optical properties of single-wall carbon nanotubes", Synth. Met., 103, 2555-2558. https://doi.org/10.1016/S0379-6779(98)00278-1
- Kim, J., Hong , A.J., Chandra, B., Tulevski, G.S. and Sadana, D.K. (2012), "Engineering of contact resistance between transparent single-walled carbon nanotube films and a-Si:H single junction solar cells by gold nanodots", Adv. Mater., 24, 1899-1892. https://doi.org/10.1002/adma.201104677
- Kim, P., Odom, T.W., Huang, J.L. and Lieber, C.M. (1999), "Electronic density of states of atomically resolved single-walled carbon nanotubes: van Hove singularities and end states", Phys. Rev. Lett., 82, 1225-1228. https://doi.org/10.1103/PhysRevLett.82.1225
- Kwon, Y. and Tomanek, D. (1998), "Electronic and structural properties of multiwall carbon nanotubes", Phys. Rev. B, 58, R16001-R16004. https://doi.org/10.1103/PhysRevB.58.R16001
- Le Borgne, V., Gautier, L.A., Castrucci, P., Del Gobbo, S., De Crescenzi, M. and El Khakani, M.A. (2012), "Enhanced UV photoresponse of KrF-laser-synthesized single-wall carbon-nanotubes/n-silicon hybrid devices", Nanotechnology, 23, 215206. https://doi.org/10.1088/0957-4484/23/21/215206
- Lee, J.U. (2005), "Photovoltaic effect in ideal carbon nanotube diodes", Appl. Phys. Lett., 87, 073101 https://doi.org/10.1063/1.2010598
- Li, C., Li, Z., Zhu, H., Wang, K., Wei, J., Li, X., Sun, P., Zhang, H. and Wu, D. (2010a), "Graphene Nano-"patches" on a carbon nanotube network for highly transparent/conductive thin film applications", J. Phys. Chem. C, 114, 14008-14012. https://doi.org/10.1021/jp1041487
- Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., Jia, Y., Li, Z., Li, X. and Wu, D. (2010b), "Graphene-on-silicon Schottky junction solar cells", Adv. Mater., 22, 2743-2748. https://doi.org/10.1002/adma.200904383
- Li, X., Jung, Y., Sakimoto, K., Goh, T.H., Reed, M.A. and Taylor, A.D. (2013), "Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells", Energy Environ. Sci., 6, 879-887. https://doi.org/10.1039/c2ee23716d
- Li, Y., Kodama, S., Kaneko, T. and Hatakeyama, R. (2011), "Harvesting infrared solar energy by semiconducting single-walled carbon nanotubes", Appl. Phys. Expr., 4, 065101. https://doi.org/10.1143/APEX.4.065101
-
Li, Z., Kunets, V.P., Saini, V., Xu, Y., Dervishi, E., Salamo, G.J., Biris, A.R. and Biris, A.S. (2008), "
$SOCl_{2}$ enhanced photovoltaic conversion of single wall carbon nanotube/n-silicon heterojunctions", Appl. Phys. Lett., 93, 243117. https://doi.org/10.1063/1.3050465 - Li, Z., Kunets, V.P., Saini, V., Xu, Y., Dervishi, E., Salamo, G.J., Biris, A.R. and Biris, A.S. (2009), "Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions", ACS Nano, 3, 1407-1414. https://doi.org/10.1021/nn900197h
- Liang, C.W. and Roth, S. (2008), "Electrical and optical transport of gas/carbon nanotube heterojunctions", Nano Lett., 8, 1809-1812. https://doi.org/10.1021/nl0802178
- Lien, D.H., Hsu, W.K., Zan, H.W., Tai, N.H. and Tsai, C.H. (2006), "Photocurrent amplification at carbon nanotube-metal contacts", Adv. Mater., 18, 98-103. https://doi.org/10.1002/adma.200500912
- Liu, L., Jayanthi, C.S., Tang, M., Wu, S.Y., Tombler, T.W., Zhou, C., Alexseyev, L., Kong, J. and Dai, H. (2000), "Controllable reversibility of an sp2 to sp3 transition of a single wall nanotube under the manipulation of an AFM tip: a nanoscale electromechanical switch?", Phys. Rev. Lett., 84, 4950-4953. https://doi.org/10.1103/PhysRevLett.84.4950
- Liu, X., Pichler, T., Knupfer, M., Golden, M.S., Fink, J., Kataura, H. and Achiba, Y. (2002), "Detailed analysis of the mean diameter and diameter distribution of single-wall carbon nanotubes from their optical response ", Phys. Rev. B, 66, 045411. https://doi.org/10.1103/PhysRevB.66.045411
- Lombardi, I., Hochbaum, A.I., Yang, P.D., Carraro C. and Maboudian, R. (2006), "Synthesis of high density, size-controlled Si nanowire arrays via porous anodic alumina mask", Chem. Mater., 18, 988-991. https://doi.org/10.1021/cm052435x
- Lu, S. and Panchapakesan, B. (2006), "Photoconductivity in single wall carbon nanotube sheets", Nanotechnology, 17, 1843-1850. https://doi.org/10.1088/0957-4484/17/8/006
- Luque, A. and Hegedus, S. (2003), Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, 1168.
- McEuen, P.L. and Park, J.Y. (2004), "Electron transport in single-walled carbon nanotubes", MRS Bull., 29, 272-275. https://doi.org/10.1557/mrs2004.79
- Merchant, C.A. and Markovi, N. (2008), "Effects of diffusion on photocurrent generation in single-walled carbon nanotube films", Appl. Phys. Lett., 92, 243510. https://doi.org/10.1063/1.2949742
- Merchant, C.A. and Markovi, N. (2009), "The photoresponse of spray-coated and free-standing carbon nanotube films with Schottky contacts", Nanotechnology, 20, 175202. https://doi.org/10.1088/0957-4484/20/17/175202
- Miao, X., Tongay, S., Petterson, M.K., Berke, K., Rinzler, A.G., Appleton, B.R. and Hebard, A.F. (2012), "High efficiency graphene solar cells by chemical doping", Nano Lett.,12, 2745-2750. https://doi.org/10.1021/nl204414u
- Michalak, D.J. and Lewis, N.S. (2002), "Use of near-surface channel conductance and differential capacitance versus potential measurements to correlate inversion layer formation with low effective surface recombination velocities at n-Si/liquid contacts", Appl. Phys. Lett., 80, 4458-4460. https://doi.org/10.1063/1.1479456
- Michalak, D.J., Gstrein, F. and Lewis, N.S. (2008), "The role of band bending in affecting the surface recombination velocities for Si(111) in contact with aqueous acidic electrolytes", J. Phys. Chem. C, 112, 5911-5921. https://doi.org/10.1021/jp075354s
- Mintmire, J.W. and White, C.T. (1995), "Electronic and structural properties of carbon nanotubes ", Carbon, 33, 893-902. https://doi.org/10.1016/0008-6223(95)00018-9
- Misewich, J.A., Martel, R., Avouris, Ph., Tsang, J.C., Heinze, S. and Tersoff, J. (2003), "Electrically induced optical emission from a carbon nanotube FET", Science, 300, 783-786. https://doi.org/10.1126/science.1081294
- Mohite, A., Chakraborty, S., Gopinath, P., Sumanasekera, G.U. and Alphenaar, B.W. (2005), "Displacement current detection of photoconduction in carbon nanotubes", Appl. Phys. Lett., 86, 061114. https://doi.org/10.1063/1.1863447
- Murakami, Y., Einarsson, E., Edamura, T. and Maruyamaet, S. (2005), "Polarization dependence of the optical absorption of single-walled carbon nanotubes", Phys. Rev. Lett., 94, 087402. https://doi.org/10.1103/PhysRevLett.94.087402
- Odom, T.W., Huang, J.L., Kim, P. and Lieber, C.M. (1998), "Atomic structure and electronic properties of single-walled carbon nanotubes ", Nature, 391, 62-64. https://doi.org/10.1038/34145
- Ong, P.L., Euler, W.B. and Levitsky, I.A. (2010a), "Carbon nanotube-Si diode as a detector of mid-infrared illumination", Appl. Phys. Lett., 96, 033106. https://doi.org/10.1063/1.3279141
- Ong, P.L., Euler, W.B., Levitsky, I.A. (2010b), "Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions", Nanotechnology, 21, 105203. https://doi.org/10.1088/0957-4484/21/10/105203
- Okada, S. and Oshiyama, A. (2003), "Curvature-induced metallization of double-walled semiconducting zigzag carbon nanotubes", Phys. Rev. Lett., 91, 216801 https://doi.org/10.1103/PhysRevLett.91.216801
- Pintossi, C., Salvinelli, G., Drera, G., Pagliara, S., Sangaletti, L., Del Gobbo, S., Morbidoni, M., Scarselli, M., De Crescenzi, M. and Castrucci, P. (2013) "Direct evidence of chemically inhomogeneous, nanostructured, Si-O buried interfaces and their effect on the efficiency of CNT/Si photovoltaic heterojunctions". (under Review)
- Ponzoni, S., Galimberti, G., Sangaletti, L., Castrucci, P., Del Gobbo, S., Morbidoni, M., Scarselli, M., Pagliara, S. (2013), "Interface-coupled relaxation dynamics in CNT-Si hybrid solar cells". (submitted to ACSNano)
- Riben, A.R. and Feucht, D.L. (1966), "nGe-pGaAs Heterojunctions", Solid State Electron., 9, 1055-1065. https://doi.org/10.1016/0038-1101(66)90129-8
- Saini, V., Li, Z., Bourdo, S., Kunets, V.P., Trigwell, S., Couraud, A., Rioux, J., Boyer, C., Nteziyaremye, V., Dervishi, E., Biris, A.R., Salamo, G.J., Viswanathan, T. and Biris, A.S. (2011), "Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions", J. Appl. Phys., 109, 014321. https://doi.org/10.1063/1.3531112
- Saito, R., Fujita, M., Dresselhaus, G. and Dresselhaus, M.S. (1992), "Electronic structure of chiral graphene tubules", Appl. Phys. Lett., 60, 2204. https://doi.org/10.1063/1.107080
- Saito, R., Dresselhaus, G. and Dresselhaus, M.S. (1993), "Electronic structure of double-layer graphene tubules", J. Appl. Phys., 73, 494 https://doi.org/10.1063/1.353358
- Saito, S. (1997), "Carbon nanotubes for next-generation electronics devices", Science, 278, 77-78. https://doi.org/10.1126/science.278.5335.77
- Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W. and Zuppiroli, L. (1999), "Mechanical properties of carbon nanotubes", Appl. Phys. A, 69, 255-260.
- Scarselli, M., Scilletta, C., Tombolini, F., Castrucci, P., Diociaiuti, M., Casciardi, S., Gatto, E., Venanzi, M. and De Crescenzi, M. (2009), "Multiwall carbon nanotubes decorated with copper nanoparticles: effect on the photocurrent response", J. of Phys. Chem. C, 113, 5860-5864. https://doi.org/10.1021/jp809944d
- Scarselli, M., Castrucci, P., Camilli, L., Del Gobbo, S., Casciardi, S., Tombolini, F., Gatto, E., Venanzi, M. and De Crescenzi, M. (2011), "Influence of Cu nanoparticle size on the photo-electrochemical response from Cu-multiwall carbon nanotube composites", Nanotechonology, 22, 035701. https://doi.org/10.1088/0957-4484/22/3/035701
- Scarselli, M., Castrucci, P. and De Crescenzi, M., (2012a), "Electronic and optoelectronic nano-devices based on carbon nanotubes", J. Phys.: Condens. Matter, 24, 313202. https://doi.org/10.1088/0953-8984/24/31/313202
- Scarselli, M., Camilli, L., Matthes, L., Pulci, O., Castrucci, P., Gatto, E., Venanzi, M. and De Crescenzi, M. (2012b), "Photoresponse from noble metal nanoparticles-multi walled carbon nanotube composites", Appl. Phys. Lett., 101, 241113. https://doi.org/10.1063/1.4771125
- Shi, Y., Kim, K.K., Reina, A., Hofmann, M., Li, L.J. and Kong, J. (2010), "Work function engineering of graphene electrode via chemical doping", Acs Nano, 4, 2689-2694. https://doi.org/10.1021/nn1005478
-
Shi, E., Zhang, L., Li, Z., Li, P., Shang, Y., Jia, Y., Wei, J., Wang, K., Zhu, H., Wu, D., Zhang, S. and Cao, A. (2012), "
$TiO_{2}$ -coated carbon nanotube-silicon solar cells with efficiency of 15%", Scientific Report, 2, 884. https://doi.org/10.1038/srep00884 - Shimizu, T., Xie, T., Nishikawa, J., Shingubara, S., Senz, S. and Gosele, U. (2007), "Synthesis of vertical high-density epitaxial Si(100) nanowire arrays on a Si(100) substrate using an anodic aluminum oxide template", Adv. Mater., 19, 917-920. https://doi.org/10.1002/adma.200700153
-
Shin, D.W., Lee, J.H., Kim, Y.H., Yu, S.M., Park, S.Y., Yoo, J.B. (2009), "A role of
$HNO_{3}$ on transparent conducting film with single-walled carbon nanotubes", Nanotechnology, 20, 475703. https://doi.org/10.1088/0957-4484/20/47/475703 - Shyu, F.L. and Lin, M.F. (2000), "Loss spectra of graphite-related systems: A multiwall carbon nanotube, a single-wall carbon nanotube bundle, and graphite layers", Phys. Rev. B, 62, 8508-8516. https://doi.org/10.1103/PhysRevB.62.8508
- Shockley, W. and Queisser, H.J. (1961), "Detailed balance limit of efficiency of p-n junction solar cells ", J. Appl. Phys., 32, 510. https://doi.org/10.1063/1.1736034
- Shu, Q., Wei , J., Wang, K., Zhu, H., Li, Z., Jia, Y., Gui, X., Guo, N., Li, X., Ma, C. and Wu, D. (2009), "Hybrid heterojunction and photoelectrochemistry solar cell based on silicon nanowires and double-walled carbon nanotubes", Nano Lett., 9, 4338-4342. https://doi.org/10.1021/nl902581k
- Shu, Q., Wei, J., Wang, K., Song, S., Guo, N., Jia, Y., Li, Z., Xu, Y., Cao, A., Zhu, H., Wu, D. (2010), "Efficient energy conversion of nanotube/nanowire-based solar cells", Chem. Commun., 46, 5533-5535. https://doi.org/10.1039/c0cc00512f
- Sivakov, V., Andra, G., Gawlik, A., Berger, A., Plentz, J., Falk, F. and Christiansen, S. H. (2009), "Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters", Nano Lett., 9, 1549-1554. https://doi.org/10.1021/nl803641f
- Stewart, D.A. and Leonard, F. (2004), "Photocurrent in nanotube junctions", Phys. Rev. Lett., 93, 107401 https://doi.org/10.1103/PhysRevLett.93.107401
- Sun, J.L., Wei, J., Zhu, J.L., Xu, D., Liu, X., Sun, H., Wu, D.H. and Wu, N.L. (2006), "Photoinduced currents in carbon nanotube/metal heterojunctions", Appl. Phys. Lett., 88, 131107. https://doi.org/10.1063/1.2189454
- Tey, J.N., Ho, X. and Wei, J. (2012), "Effect of doping on single-walled carbon nanotubes network of different metallicity", Nanoscale Res. Lett., 7, 548. https://doi.org/10.1186/1556-276X-7-548
- Tombler, T., Zhou, C., Alexeyev, L., Kong, J., Dai, H., Liu, L., Jayanthi, C., Tang, M. and Wu, S. (2000), "Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation", Nature, 405, 769-772. https://doi.org/10.1038/35015519
- Tung, R.T. (2000), "Chemical bonding and Fermi level pinning at metal-semiconductor interfaces", Phys. Rev. Lett., 84, 6078-6081. https://doi.org/10.1103/PhysRevLett.84.6078
- Tune, D.D., Flavel, B.S., Krupke, R. and Shapter, J. G. (2012), "Carbon nanotube-silicon solar cells", Adv. Energy Mater., 2, 1043-1055. https://doi.org/10.1002/aenm.201200249
- Tzolov, M.B., Kuo, T.F., Straus, D.A., Yin, A. and Xu, J. (2007), "Carbon nanotube-silicon heterojunction arrays and infrared photocurrent responses", J. Phys. Chem. C, 111, 5800-5804.
- U.S. Department of Energy (2010), $1/W Photovoltaic Systems, 1-28.
- Venema, L.C., Janssen, J.W., Buitelaar, M.R., Wildoer, J.W.G., Lemay, S.G., Kouwenhoven, L.P. and Dekker, C. (2000), "Spatially resolved scanning tunneling spectroscopy on single-walled carbon nanotubes", Phys. Rev. B, 62, 5238-5244. https://doi.org/10.1103/PhysRevB.62.5238
- Wadhwa, P., Liu, B., McCarthy, M.A., Wu, Z., Rinzler, A.G. (2010), "Electronic junction control in a nanotube-semiconducting Schottky junction solar cell", Nano Lett., 10, 5001-5005. https://doi.org/10.1021/nl103128a
- Wang, H., Bai, X., Wei, J., Li, P., Jia, Y., Zhu, H., Wang, K. and Wu, D. (2012), "Preparation of CuI particles and their applications in carbon nanotube-Si heterojunction solar cells", Materials Letters, 79, 106-108. https://doi.org/10.1016/j.matlet.2012.03.114
- Wang, S., Khafizov, M., Tu, X., Zheng, M., and Krauss, T.D. (2010), "Multiple exciton generation in single-walled carbon nanotubes", Nano Lett., 10, 2381-2386. https://doi.org/10.1021/nl100343j
- Wei, J., Jia,Y., Shu, Q., Gu, Z., Wang, K., Zhuang, D., Zhang, G., Wang, Z., Luo, J., Cao, A. and Wu, D. (2007), "Double-walled carbon nanotube solar cells", Nano Lett., 7, 2317-2321. https://doi.org/10.1021/nl070961c
- Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamars, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F. and Rinzler, A.G. (2004), "Transparent, conductive carbon nanotube films", Science, 305, 1273-1276. https://doi.org/10.1126/science.1101243
- Zeidenbergs, G. and Anderson, R.L. (1967), "Si-GaP heterojunctions", Solid State Electron., 10, 113-123. https://doi.org/10.1016/0038-1101(67)90028-7
- Zhang, Z.B., Li, J., Cabezas, A.L. and Zhang, S.L. (2009), "Characterization of acid-treated carbon nanotube thin films by means of Raman spectroscopy and field effect response", Chem. Phys. Lett., 476, 258-261. https://doi.org/10.1016/j.cplett.2009.06.041
- Zhou, C., Kong, J., Yenilmez, E. and Dai, H. (2000), "Modulated chemical doping of individual carbon nanotubes", Science, 290, 1552-1555. https://doi.org/10.1126/science.290.5496.1552
- Zhou, H., Colli, A., Ahnood, A., Yang, Y., Rupesinghe, N., Butler, T., Haneef, I., Hiralal, P. and Nathan, A., Amaratunga, G.A.J. (2009), "Arrays of parallel connected coaxial multiwall-carbon-nanotube-amorphous-silicon solar cells", Adv. Mater., 21, 3919-3923. https://doi.org/10.1002/adma.200901094
- Zhou, W., Vavro, J., Nemes, N.M., Fischer, J.E., Borondics, F., Kamaras, K. and Tanner, D.B. (2005), "Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes", Phys. Rev. B, 71, 205423. https://doi.org/10.1103/PhysRevB.71.205423
피인용 문헌
- Controlling the thickness of carbon nanotube random network films by the estimation of the absorption coefficient vol.95, 2015, https://doi.org/10.1016/j.carbon.2015.07.096
- Single walled carbon nanotube/Si heterojunctions for high responsivity photodetectors vol.28, pp.43, 2017, https://doi.org/10.1088/1361-6528/aa8797
- A cross-functional nanostructured platform based on carbon nanotube-Si hybrid junctions: where photon harvesting meets gas sensing vol.7, 2017, https://doi.org/10.1038/srep44413
- Steering the Efficiency of Carbon Nanotube–Silicon Photovoltaic Cells by Acid Vapor Exposure: A Real-Time Spectroscopic Tracking vol.7, pp.18, 2015, https://doi.org/10.1021/am508973b
- Hybridized C–O–Si Interface States at the Origin of Efficiency Improvement in CNT/Si Solar Cells vol.9, pp.19, 2017, https://doi.org/10.1021/acsami.7b01766
- Impact of SWCNT processing on nanotube-silicon heterojunctions vol.8, pp.15, 2016, https://doi.org/10.1039/C5NR08703A
- Interband optical properties in wide band gap group-III nitride quantum dots vol.3, pp.1, 2015, https://doi.org/10.12989/anr.2015.3.1.013
- Carbon nanotube–amorphous silicon hybrid solar cell with improved conversion efficiency vol.27, pp.18, 2016, https://doi.org/10.1088/0957-4484/27/18/185401
- Investigating the Effect of Carbon Nanotube Diameter and Wall Number in Carbon Nanotube/Silicon Heterojunction Solar Cells vol.6, pp.3, 2016, https://doi.org/10.3390/nano6030052
- Transport properties in aggregates of Nb nanowires templated by carbon nanotube films vol.105, 2016, https://doi.org/10.1016/j.carbon.2016.04.068
- Nature of Record Efficiency Fluid-Processed Nanotube–Silicon Heterojunctions vol.119, pp.19, 2015, https://doi.org/10.1021/acs.jpcc.5b02626
- Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams vol.7, pp.6, 2019, https://doi.org/10.12989/anr.2019.7.6.391
- Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory vol.8, pp.3, 2014, https://doi.org/10.12989/anr.2020.8.3.191
- Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM vol.8, pp.4, 2014, https://doi.org/10.12989/anr.2020.8.4.283
- Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation vol.26, pp.1, 2020, https://doi.org/10.12989/sss.2020.26.1.077
- Gas Sensing with Solar Cells: The Case of NH 3 Detection through Nanocarbon/Silicon Hybrid Heterojunctions vol.10, pp.11, 2020, https://doi.org/10.3390/nano10112303
- Carbon Nanotube Film/Silicon Heterojunction Photodetector for New Cutting-Edge Technological Devices vol.11, pp.2, 2021, https://doi.org/10.3390/app11020606
- Surface and interface effects on the current-voltage characteristic curves of multiwall carbon nanotube-Si hybrid junctions selectively probed through exposure to HF vapors and ppm-NO2 vol.129, pp.5, 2014, https://doi.org/10.1063/5.0033552