DOI QR코드

DOI QR Code

Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices

  • Received : 2013.08.02
  • Accepted : 2014.01.08
  • Published : 2014.03.25

Abstract

The significant growth of the Si photovoltaic industry has been so far limited due to the high cost of the Si photovoltaic system. In this regard, the most expensive factors are the intrinsic cost of silicon material and the Si solar cell fabrication processes. Conventional Si solar cells have p-n junctions inside for an efficient extraction of light-generated charge carriers. However, the p-n junction is normally formed through very expensive processes requiring very high temperature (${\sim}1000^{\circ}C$). Therefore, several systems are currently under study to form heterojunctions at low temperatures. Among them, carbon nanotube (CNT)/Si hybrid solar cells are very promising, with power conversion efficiency up to 15%. In these cells, the p-type Si layer is replaced by a semitransparent CNT film deposited at room temperature on the n-doped Si wafer, thus giving rise to an overall reduction of the total Si thickness and to the fabrication of a device with cheaper methods at low temperatures. In particular, the CNT film coating the Si wafer acts as a conductive electrode for charge carrier collection and establishes a built-in voltage for separating photocarriers. Moreover, due to the CNT film optical semitransparency, most of the incoming light is absorbed in Si; thus the efficiency of the CNT/Si device is in principle comparable to that of a conventional Si one. In this paper an overview of several factors at the basis of this device operation and of the suggested improvements to its architecture is given. In addition, still open physical/technological issues are also addressed.

Keywords

References

  1. Akai, Y. and Saito, S. (2005), "Electronic structure, energetics and geometric structure of carbon nanotubes: A density-functional study", Physica E, 29, 555-559 https://doi.org/10.1016/j.physe.2005.06.026
  2. American Census bureau (2012), The 2012 Statistical abstract, World Primary Energy Consumption by Region and Type.
  3. Anderson, R.L. (1962), "Experiments on Ge-GaAs heterojunctions", Solid State Electron., 5, 341-344. https://doi.org/10.1016/0038-1101(62)90115-6
  4. Bai, X., Wang, H., Wei, J., Jia,, Y., Zhu, H., Wang, K. and Wu, D. (2012), "Carbon nanotube-silicon hybrid solar cells with hydrogen peroxide doping", Chem. Phys. Lett., 533, 70-73. https://doi.org/10.1016/j.cplett.2012.03.013
  5. Balasubramanian, K., Fan, Y., Burghard, M., Kern, K., Friedrich, M., Wannek, U. and Mews, A. (2004), "Photoelectronic transport imaging of individual semiconducting carbon nanotubes", Appl. Phys. Lett., 84, 2400-2402. https://doi.org/10.1063/1.1688451
  6. Barazzouk, S., Hotchandani, S., Vinodgopal, K. and Kamat, P. V. (2004) "Single-wall carbon nanotube films for photocurrent generation. a prompt response to visible-light irradiation", J. Phys. Chem. B, 108, 17015-17018. https://doi.org/10.1021/jp0458405
  7. Benham, A., Johnson, J. L., Choi, Y., Ertosun, M. G., Okyay, A. K., Kapur, P., Saraswat, K. C. and Ural, A. (2008), "Experimental characterization of single-walled carbon nanotube film-Si Schottky contacts using metal-semiconductor-metal structures", Appl. Phys. Lett., 92, 243116. https://doi.org/10.1063/1.2945644
  8. Benham, A., Radhakrishna, N. A., Wu, Z. and Ural, A. (2010), "Electronic properties of metal-semiconductor and metal-oxide semiconductor structures composed of carbon nanotube film on silicon", Appl. Phys. Lett., 97, 233105. https://doi.org/10.1063/1.3524194
  9. Card, H. C. (1977), "Photovoltaic properties of MIS-Schottky barriers", Solid State Electron., 20, 971-976. https://doi.org/10.1016/0038-1101(77)90206-4
  10. Castrucci, P., Scarselli, M., De Crescenzi, M., El Khakani, M.A., Rosei, F., Braidy, N. and Yi, J.H. (2004), "Effect of coiling on the electronic properties along single-wall carbon nanotubes" Appl. Phys. Lett., 85, 3857. https://doi.org/10.1063/1.1809277
  11. Castrucci, P., Tombolini, F., Scarselli, M., Speiser, E., Del Gobbo, S., Richter, W., De Crescenzi, M., Diociaiuti, M., Gatto E. and Venanzi, M. (2006), "Large photocurrent generation in multiwall carbon nanotubes", Appl. Phys. Lett., 89, 253107. https://doi.org/10.1063/1.2408648
  12. Castrucci, P., Scilletta, C., Del Gobbo, S., Scarselli, M., Camilli, L., Simeoni, M., Delley, B., Continenza, A. and De Crescenzi, M. (2011), "Light harvesting with multiwall carbon nanotube/silicon heterojunctions", Nanotechnology, 22, 115701. https://doi.org/10.1088/0957-4484/22/11/115701
  13. Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C. and Haddon, R.C. (1998), "Solution properties of single-walled carbon nanotubes", Science, 282, 95-98. https://doi.org/10.1126/science.282.5386.95
  14. Chen, L., Zhang, S., Changm L., Zeng, L., Yu, X., Zhao, J., Zhao, S., Xu, C. (2013), "Photovoltaic conversion enhancement of single wall carbon-Si heterojunction solar cell decorated with Ag nanoparticles", Electrochem. Acta, 93, 293-300. https://doi.org/10.1016/j.electacta.2013.01.068
  15. Collins, P.G., Bradley, K., Ishigami, M. and Zettl, A. (2000), "Extreme oxygen sensitivity of electronic properties of carbon nanotubes", Science, 287, 1801-1804. https://doi.org/10.1126/science.287.5459.1801
  16. Cowley, A.M. and Sze, S. M. (1965), "Surface states and barrier height of metal-semiconductor systems", J. Appl. Phys., 36, 3212-3220. https://doi.org/10.1063/1.1702952
  17. Del Gobbo, S., Castrucci, P., Scarselli, M., Camilli, L., De Crescenzi, M., Mariucci, L., Valletta, A., Minotti, A. and Fortunato, G. (2011), "Carbon nanotube semitransparent electrodes for amorphous silicon based photovoltaic devices ", Appl. Phys. Lett., 98, 183113. https://doi.org/10.1063/1.3588352
  18. Del Gobbo, S. Castrucci, P., Fedele, S., Riele, L., Convertino, A., Morbidoni, M., De Nicola, F., Scarselli, M., Camilli, L. and De Crescenzi, M. (2013), "Silicon spectral response extension through single wall carbon nanotubes in hybrid solar cells", J. Mater. Chem. C, 1, 6752-6758. https://doi.org/10.1039/c3tc31038h
  19. Di, J., Yong, Z., Zheng, X., Sun, B. and Li, B. (2013), "Aligned carbon nanotubes for high efficiency Schottky solar cells", Small, 9, 1367-1372. https://doi.org/10.1002/smll.201202995
  20. Dresselhaus, M.S., Dresselhaus, G., Sugihara, K., Spain, I.L. and Goldberg, H.A. (1988), "Graphite fibers and filaments", Springer Ser. Mater. Sci., 5, Springer, Berlin.
  21. Dresselhaus, M.S., Dresselhaus, G. and Eklund P. (1996), Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego.
  22. El Khakani, M.A., Le Borgne, V., Aissa, B., Rosei, F., Scilletta, C., Speiser, E., Scarselli, M., Castrucci, P. and De Crescenzi, M. (2009), "Photocurrent generation in random networks of multiwall-carbon nanotubes grown by an "all-laser" process", Appl. Phys. Lett., 95, 083114. https://doi.org/10.1063/1.3211958
  23. European Energy Council (2006), Renewable Energy Scenario To 2040: Half Of The Global Energy Supply From Renewables In 2040, European Renewable Energy Council.
  24. Fan, G., Fan, L., Li, Z., Bai, X., Mulligan, S., Jia, Y., Wang, K., Wei, J., Cao, A., Wu, D., Wei, B. and Zhu, J. (2012), "Hybrid effect of gas flow and light excitation in carbon/silicon Schottky solar cells", J. Mater. Chem., 22, 3330-3334. https://doi.org/10.1039/c2jm15938d
  25. Fanchini, G., Unalan H. E. and Chhowalla, M. (2006), "Optoelectronic properties of transparent and conducting single-wall carbon nanotube thin films", Appl. Phys. Lett., 88, 191919. https://doi.org/10.1063/1.2202703
  26. Feng, T., Xie, D., Lin, Y., Zang, Y., Ren, T., Song, R., Zhao, H., Tian, H., Li, X., Zhu, H. and Liu, L. (2011), "Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate", Appl. Phys. Lett., 99, 233505. https://doi.org/10.1063/1.3665404
  27. Freitag, M., Martin, Y., Misewich, J.A., Martel, R. and Avouris, Ph. (2003), "Photoconductivity of single carbon nanotubes ", Nano Lett., 3, 1067-1071. https://doi.org/10.1021/nl034313e
  28. Fujiwara, A., Matsuoka, Y., Suematsu, H., Ogawa, N., Miyano, K., Kataura, H., Maniwa, Y., Suzuki, S. and Achiba, Y. (2001), "Photoconductivity in semiconducting single-walled carbon nanotubes", Jpn. J. Appl. Phys., 40, L1229-L1231. https://doi.org/10.1143/JJAP.40.L1229
  29. Fuhrer, M.S., Nygard, J., Shih, L., Forero, M., Yoon, Y.G., Mazzoni, M.S.C., Choi, H.J., Ihm, J., Steven, M., Louie, G., Zettl, A. and McEuen, P.L. (2000), "Crossed nanotube junction", Science, 288, 494-497. https://doi.org/10.1126/science.288.5465.494
  30. Gabor, N.M., Zhong, Z., Bosnick, K., Park, J. and McEuen, P.L. (2009), "Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes", Science, 325, 1367-1371. https://doi.org/10.1126/science.1176112
  31. Galimberti, G., Ponzoni, S., Cartella, A., Cole, M.T., Hofmann, S., Cepek, C., Ferrini, G. and Pagliara, S. (2013), "Probing the electronic structure of multi-walled carbon nanotubes by transient optical transmittivity", Carbon, 57, 50-58. https://doi.org/10.1016/j.carbon.2013.01.030
  32. Green, M.A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E.D. (2012), "Solar cell efficiency tables (version 39)", Progress in photovoltaics: Research and Applications, 20, 12-20. https://doi.org/10.1002/pip.2163
  33. Grosso, G. and Pastori Parravacini, G. (2000), Solid State Physics, Academic Press, San Diego, CA, USA.
  34. Haacke, G. (1976), "New figure of merit for transparent conductors", J. Appl. Phys., 47, 4086-4089. https://doi.org/10.1063/1.323240
  35. Hamada, N., Sawada, S. and Oshiyama, A. (1992), "New one-dimensional conductors: graphitic microtubules", Phys. Rev. Lett., 68, 1579-1581. https://doi.org/10.1103/PhysRevLett.68.1579
  36. Ho, Y.H., Chang, C.P., Shyu, F.L., Chen, R.B., Chen, S.C. and Lin, M.F. (2004), "Electronic and optical properties of double-walled armchair carbon nanotubes ", Carbon, 42, 3159-3167. https://doi.org/10.1016/j.carbon.2004.07.027
  37. Hoffert, M.I., Caldeira K., Jain, A.K., Haites, E.F., Harvey, L.D.D., Potter, S.D., Schelsinge, M.E., Schneider, S.H., Watts, R.G., Wigley, T.M.L. and Wuebbles, D.J. (1998), "Energy implications of future stabilization of atmospheric $CO_{2}$ content", Nature, 395, 881-884. https://doi.org/10.1038/27638
  38. Hu, L., Hecht, D.S. and Gruner, G. (2004), "Percolation in transparent and conducting carbon nanotube networks", Nano Lett., 4, 2513-2517. https://doi.org/10.1021/nl048435y
  39. Jackson, R., Domercq, B., Jain, R., Kippelen, B. and Graham, S. (2008), "Stability of doped transparent carbon nanotube electrodes", Adv. Funct. Mater., 18, 2548-2554. https://doi.org/10.1002/adfm.200800324
  40. Jia, Y., Wei, J., Wang, K., Cao, A., Shu, Q., Gui, X., Zhu, Y., Zhuang, D., Zhang, G., Ma, B., Wang, L., Liu, W., Wang, Z., Luo, J. and Wu, D. (2008), "Nanotube-Silicon heterojunction solar cells", Adv. Mater, 20, 4594-4598. https://doi.org/10.1002/adma.200801810
  41. Jia, Y., Li, P., Wei, J., Cao, A., Wang, K., Li, Co, Zhuang, D., Zhu, H. and Wu, D. (2010), " Carbon nanotube films by filtration for nanotube-silicon heterojunction solar cells", Mater. Research Bull., 45, 1401-1405. https://doi.org/10.1016/j.materresbull.2010.06.045
  42. Jia, Y., Li, P., Gui, X., Wei, J., Wang, K., Zhu, H., Wu, D., Zhang, L., Cao, A. and Xu, Y. (2011a), "Encaspulated carbon nanotube-oxide-silicon solar cells with stable efficiency", Appl. Phys. Lett., 98, 133115. https://doi.org/10.1063/1.3573829
  43. Jia, Y., Cao, A., Bai, X., Li, Z., Zhang, L., Guo, N., Wei, J., Wang, K., Zhu, H., Wu, D. and Ajayan, P. M. (2011b), "Achieving high efficiency silicon-carbon nanotube heterojunction solar cells by acid doping", Nano Lett., 11, 1901-1905. https://doi.org/10.1021/nl2002632
  44. Jia, Y., Cao, A., Kang, F., Li, P., Gui, X., Zhang, L., Shi, E., Wei, J., Wang K., Zhu, H. and Wu, D. (2012), "Strong and reversible modulation of carbon nanotube?silicon heterojunction solar cells by an interfacial oxide layer", Phys. Chem. Chem. Phys., 14, 8391-8396. https://doi.org/10.1039/c2cp23639g
  45. Jorio, A., Dresselhaus, M.S. and Dresselhaus, G. (2008) Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties, and Applications, Springer, New York.
  46. Jung, Y., Li, X., Rajan, N.K., Taylor, A.D. and Reed, M.A. (2013), "Record high efficiency single-walled carbon nanotube/silicon p-n junction solar cells ", Nano Lett., 13, 95-99. https://doi.org/10.1021/nl3035652
  47. Kalita, G., Adhikari, S., Aryal, H.R., Afre, R., Soga, T., Sharon, M., Koichi, W. and Umeno, M. (2009), "Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes", J. Phys. D: Appl. Phys., 42, 115104. https://doi.org/10.1088/0022-3727/42/11/115104
  48. Kaskela, A., Nasibulin, A.G., Timmermans, M.Y., Aitchison, B., Papadimitratos, A., Tian, Y., Zhu, Z., Jiang, H., Brown, D.P., Zakhidov, A. and Kauppinen, E.I. (2010), "Aerosol-synthesized swcnt networks with tunable conductivity and transparency by a dry transfer technique", Nano Lett., 10, 4349-4355. https://doi.org/10.1021/nl101680s
  49. Kataura, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y. and Achiba, Y. (1999), "Optical properties of single-wall carbon nanotubes", Synth. Met., 103, 2555-2558. https://doi.org/10.1016/S0379-6779(98)00278-1
  50. Kim, J., Hong , A.J., Chandra, B., Tulevski, G.S. and Sadana, D.K. (2012), "Engineering of contact resistance between transparent single-walled carbon nanotube films and a-Si:H single junction solar cells by gold nanodots", Adv. Mater., 24, 1899-1892. https://doi.org/10.1002/adma.201104677
  51. Kim, P., Odom, T.W., Huang, J.L. and Lieber, C.M. (1999), "Electronic density of states of atomically resolved single-walled carbon nanotubes: van Hove singularities and end states", Phys. Rev. Lett., 82, 1225-1228. https://doi.org/10.1103/PhysRevLett.82.1225
  52. Kwon, Y. and Tomanek, D. (1998), "Electronic and structural properties of multiwall carbon nanotubes", Phys. Rev. B, 58, R16001-R16004. https://doi.org/10.1103/PhysRevB.58.R16001
  53. Le Borgne, V., Gautier, L.A., Castrucci, P., Del Gobbo, S., De Crescenzi, M. and El Khakani, M.A. (2012), "Enhanced UV photoresponse of KrF-laser-synthesized single-wall carbon-nanotubes/n-silicon hybrid devices", Nanotechnology, 23, 215206. https://doi.org/10.1088/0957-4484/23/21/215206
  54. Lee, J.U. (2005), "Photovoltaic effect in ideal carbon nanotube diodes", Appl. Phys. Lett., 87, 073101 https://doi.org/10.1063/1.2010598
  55. Li, C., Li, Z., Zhu, H., Wang, K., Wei, J., Li, X., Sun, P., Zhang, H. and Wu, D. (2010a), "Graphene Nano-"patches" on a carbon nanotube network for highly transparent/conductive thin film applications", J. Phys. Chem. C, 114, 14008-14012. https://doi.org/10.1021/jp1041487
  56. Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., Jia, Y., Li, Z., Li, X. and Wu, D. (2010b), "Graphene-on-silicon Schottky junction solar cells", Adv. Mater., 22, 2743-2748. https://doi.org/10.1002/adma.200904383
  57. Li, X., Jung, Y., Sakimoto, K., Goh, T.H., Reed, M.A. and Taylor, A.D. (2013), "Improved efficiency of smooth and aligned single walled carbon nanotube/silicon hybrid solar cells", Energy Environ. Sci., 6, 879-887. https://doi.org/10.1039/c2ee23716d
  58. Li, Y., Kodama, S., Kaneko, T. and Hatakeyama, R. (2011), "Harvesting infrared solar energy by semiconducting single-walled carbon nanotubes", Appl. Phys. Expr., 4, 065101. https://doi.org/10.1143/APEX.4.065101
  59. Li, Z., Kunets, V.P., Saini, V., Xu, Y., Dervishi, E., Salamo, G.J., Biris, A.R. and Biris, A.S. (2008), "$SOCl_{2}$ enhanced photovoltaic conversion of single wall carbon nanotube/n-silicon heterojunctions", Appl. Phys. Lett., 93, 243117. https://doi.org/10.1063/1.3050465
  60. Li, Z., Kunets, V.P., Saini, V., Xu, Y., Dervishi, E., Salamo, G.J., Biris, A.R. and Biris, A.S. (2009), "Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions", ACS Nano, 3, 1407-1414. https://doi.org/10.1021/nn900197h
  61. Liang, C.W. and Roth, S. (2008), "Electrical and optical transport of gas/carbon nanotube heterojunctions", Nano Lett., 8, 1809-1812. https://doi.org/10.1021/nl0802178
  62. Lien, D.H., Hsu, W.K., Zan, H.W., Tai, N.H. and Tsai, C.H. (2006), "Photocurrent amplification at carbon nanotube-metal contacts", Adv. Mater., 18, 98-103. https://doi.org/10.1002/adma.200500912
  63. Liu, L., Jayanthi, C.S., Tang, M., Wu, S.Y., Tombler, T.W., Zhou, C., Alexseyev, L., Kong, J. and Dai, H. (2000), "Controllable reversibility of an sp2 to sp3 transition of a single wall nanotube under the manipulation of an AFM tip: a nanoscale electromechanical switch?", Phys. Rev. Lett., 84, 4950-4953. https://doi.org/10.1103/PhysRevLett.84.4950
  64. Liu, X., Pichler, T., Knupfer, M., Golden, M.S., Fink, J., Kataura, H. and Achiba, Y. (2002), "Detailed analysis of the mean diameter and diameter distribution of single-wall carbon nanotubes from their optical response ", Phys. Rev. B, 66, 045411. https://doi.org/10.1103/PhysRevB.66.045411
  65. Lombardi, I., Hochbaum, A.I., Yang, P.D., Carraro C. and Maboudian, R. (2006), "Synthesis of high density, size-controlled Si nanowire arrays via porous anodic alumina mask", Chem. Mater., 18, 988-991. https://doi.org/10.1021/cm052435x
  66. Lu, S. and Panchapakesan, B. (2006), "Photoconductivity in single wall carbon nanotube sheets", Nanotechnology, 17, 1843-1850. https://doi.org/10.1088/0957-4484/17/8/006
  67. Luque, A. and Hegedus, S. (2003), Handbook of Photovoltaic Science and Engineering, John Wiley & Sons, 1168.
  68. McEuen, P.L. and Park, J.Y. (2004), "Electron transport in single-walled carbon nanotubes", MRS Bull., 29, 272-275. https://doi.org/10.1557/mrs2004.79
  69. Merchant, C.A. and Markovi, N. (2008), "Effects of diffusion on photocurrent generation in single-walled carbon nanotube films", Appl. Phys. Lett., 92, 243510. https://doi.org/10.1063/1.2949742
  70. Merchant, C.A. and Markovi, N. (2009), "The photoresponse of spray-coated and free-standing carbon nanotube films with Schottky contacts", Nanotechnology, 20, 175202. https://doi.org/10.1088/0957-4484/20/17/175202
  71. Miao, X., Tongay, S., Petterson, M.K., Berke, K., Rinzler, A.G., Appleton, B.R. and Hebard, A.F. (2012), "High efficiency graphene solar cells by chemical doping", Nano Lett.,12, 2745-2750. https://doi.org/10.1021/nl204414u
  72. Michalak, D.J. and Lewis, N.S. (2002), "Use of near-surface channel conductance and differential capacitance versus potential measurements to correlate inversion layer formation with low effective surface recombination velocities at n-Si/liquid contacts", Appl. Phys. Lett., 80, 4458-4460. https://doi.org/10.1063/1.1479456
  73. Michalak, D.J., Gstrein, F. and Lewis, N.S. (2008), "The role of band bending in affecting the surface recombination velocities for Si(111) in contact with aqueous acidic electrolytes", J. Phys. Chem. C, 112, 5911-5921. https://doi.org/10.1021/jp075354s
  74. Mintmire, J.W. and White, C.T. (1995), "Electronic and structural properties of carbon nanotubes ", Carbon, 33, 893-902. https://doi.org/10.1016/0008-6223(95)00018-9
  75. Misewich, J.A., Martel, R., Avouris, Ph., Tsang, J.C., Heinze, S. and Tersoff, J. (2003), "Electrically induced optical emission from a carbon nanotube FET", Science, 300, 783-786. https://doi.org/10.1126/science.1081294
  76. Mohite, A., Chakraborty, S., Gopinath, P., Sumanasekera, G.U. and Alphenaar, B.W. (2005), "Displacement current detection of photoconduction in carbon nanotubes", Appl. Phys. Lett., 86, 061114. https://doi.org/10.1063/1.1863447
  77. Murakami, Y., Einarsson, E., Edamura, T. and Maruyamaet, S. (2005), "Polarization dependence of the optical absorption of single-walled carbon nanotubes", Phys. Rev. Lett., 94, 087402. https://doi.org/10.1103/PhysRevLett.94.087402
  78. Odom, T.W., Huang, J.L., Kim, P. and Lieber, C.M. (1998), "Atomic structure and electronic properties of single-walled carbon nanotubes ", Nature, 391, 62-64. https://doi.org/10.1038/34145
  79. Ong, P.L., Euler, W.B. and Levitsky, I.A. (2010a), "Carbon nanotube-Si diode as a detector of mid-infrared illumination", Appl. Phys. Lett., 96, 033106. https://doi.org/10.1063/1.3279141
  80. Ong, P.L., Euler, W.B., Levitsky, I.A. (2010b), "Hybrid solar cells based on single-walled carbon nanotubes/Si heterojunctions", Nanotechnology, 21, 105203. https://doi.org/10.1088/0957-4484/21/10/105203
  81. Okada, S. and Oshiyama, A. (2003), "Curvature-induced metallization of double-walled semiconducting zigzag carbon nanotubes", Phys. Rev. Lett., 91, 216801 https://doi.org/10.1103/PhysRevLett.91.216801
  82. Pintossi, C., Salvinelli, G., Drera, G., Pagliara, S., Sangaletti, L., Del Gobbo, S., Morbidoni, M., Scarselli, M., De Crescenzi, M. and Castrucci, P. (2013) "Direct evidence of chemically inhomogeneous, nanostructured, Si-O buried interfaces and their effect on the efficiency of CNT/Si photovoltaic heterojunctions". (under Review)
  83. Ponzoni, S., Galimberti, G., Sangaletti, L., Castrucci, P., Del Gobbo, S., Morbidoni, M., Scarselli, M., Pagliara, S. (2013), "Interface-coupled relaxation dynamics in CNT-Si hybrid solar cells". (submitted to ACSNano)
  84. Riben, A.R. and Feucht, D.L. (1966), "nGe-pGaAs Heterojunctions", Solid State Electron., 9, 1055-1065. https://doi.org/10.1016/0038-1101(66)90129-8
  85. Saini, V., Li, Z., Bourdo, S., Kunets, V.P., Trigwell, S., Couraud, A., Rioux, J., Boyer, C., Nteziyaremye, V., Dervishi, E., Biris, A.R., Salamo, G.J., Viswanathan, T. and Biris, A.S. (2011), "Photovoltaic devices based on high density boron-doped single-walled carbon nanotube/n-Si heterojunctions", J. Appl. Phys., 109, 014321. https://doi.org/10.1063/1.3531112
  86. Saito, R., Fujita, M., Dresselhaus, G. and Dresselhaus, M.S. (1992), "Electronic structure of chiral graphene tubules", Appl. Phys. Lett., 60, 2204. https://doi.org/10.1063/1.107080
  87. Saito, R., Dresselhaus, G. and Dresselhaus, M.S. (1993), "Electronic structure of double-layer graphene tubules", J. Appl. Phys., 73, 494 https://doi.org/10.1063/1.353358
  88. Saito, S. (1997), "Carbon nanotubes for next-generation electronics devices", Science, 278, 77-78. https://doi.org/10.1126/science.278.5335.77
  89. Salvetat, J.P., Bonard, J.M., Thomson, N.H., Kulik, A.J., Forro, L., Benoit, W. and Zuppiroli, L. (1999), "Mechanical properties of carbon nanotubes", Appl. Phys. A, 69, 255-260.
  90. Scarselli, M., Scilletta, C., Tombolini, F., Castrucci, P., Diociaiuti, M., Casciardi, S., Gatto, E., Venanzi, M. and De Crescenzi, M. (2009), "Multiwall carbon nanotubes decorated with copper nanoparticles: effect on the photocurrent response", J. of Phys. Chem. C, 113, 5860-5864. https://doi.org/10.1021/jp809944d
  91. Scarselli, M., Castrucci, P., Camilli, L., Del Gobbo, S., Casciardi, S., Tombolini, F., Gatto, E., Venanzi, M. and De Crescenzi, M. (2011), "Influence of Cu nanoparticle size on the photo-electrochemical response from Cu-multiwall carbon nanotube composites", Nanotechonology, 22, 035701. https://doi.org/10.1088/0957-4484/22/3/035701
  92. Scarselli, M., Castrucci, P. and De Crescenzi, M., (2012a), "Electronic and optoelectronic nano-devices based on carbon nanotubes", J. Phys.: Condens. Matter, 24, 313202. https://doi.org/10.1088/0953-8984/24/31/313202
  93. Scarselli, M., Camilli, L., Matthes, L., Pulci, O., Castrucci, P., Gatto, E., Venanzi, M. and De Crescenzi, M. (2012b), "Photoresponse from noble metal nanoparticles-multi walled carbon nanotube composites", Appl. Phys. Lett., 101, 241113. https://doi.org/10.1063/1.4771125
  94. Shi, Y., Kim, K.K., Reina, A., Hofmann, M., Li, L.J. and Kong, J. (2010), "Work function engineering of graphene electrode via chemical doping", Acs Nano, 4, 2689-2694. https://doi.org/10.1021/nn1005478
  95. Shi, E., Zhang, L., Li, Z., Li, P., Shang, Y., Jia, Y., Wei, J., Wang, K., Zhu, H., Wu, D., Zhang, S. and Cao, A. (2012), "$TiO_{2}$-coated carbon nanotube-silicon solar cells with efficiency of 15%", Scientific Report, 2, 884. https://doi.org/10.1038/srep00884
  96. Shimizu, T., Xie, T., Nishikawa, J., Shingubara, S., Senz, S. and Gosele, U. (2007), "Synthesis of vertical high-density epitaxial Si(100) nanowire arrays on a Si(100) substrate using an anodic aluminum oxide template", Adv. Mater., 19, 917-920. https://doi.org/10.1002/adma.200700153
  97. Shin, D.W., Lee, J.H., Kim, Y.H., Yu, S.M., Park, S.Y., Yoo, J.B. (2009), "A role of $HNO_{3}$ on transparent conducting film with single-walled carbon nanotubes", Nanotechnology, 20, 475703. https://doi.org/10.1088/0957-4484/20/47/475703
  98. Shyu, F.L. and Lin, M.F. (2000), "Loss spectra of graphite-related systems: A multiwall carbon nanotube, a single-wall carbon nanotube bundle, and graphite layers", Phys. Rev. B, 62, 8508-8516. https://doi.org/10.1103/PhysRevB.62.8508
  99. Shockley, W. and Queisser, H.J. (1961), "Detailed balance limit of efficiency of p-n junction solar cells ", J. Appl. Phys., 32, 510. https://doi.org/10.1063/1.1736034
  100. Shu, Q., Wei , J., Wang, K., Zhu, H., Li, Z., Jia, Y., Gui, X., Guo, N., Li, X., Ma, C. and Wu, D. (2009), "Hybrid heterojunction and photoelectrochemistry solar cell based on silicon nanowires and double-walled carbon nanotubes", Nano Lett., 9, 4338-4342. https://doi.org/10.1021/nl902581k
  101. Shu, Q., Wei, J., Wang, K., Song, S., Guo, N., Jia, Y., Li, Z., Xu, Y., Cao, A., Zhu, H., Wu, D. (2010), "Efficient energy conversion of nanotube/nanowire-based solar cells", Chem. Commun., 46, 5533-5535. https://doi.org/10.1039/c0cc00512f
  102. Sivakov, V., Andra, G., Gawlik, A., Berger, A., Plentz, J., Falk, F. and Christiansen, S. H. (2009), "Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters", Nano Lett., 9, 1549-1554. https://doi.org/10.1021/nl803641f
  103. Stewart, D.A. and Leonard, F. (2004), "Photocurrent in nanotube junctions", Phys. Rev. Lett., 93, 107401 https://doi.org/10.1103/PhysRevLett.93.107401
  104. Sun, J.L., Wei, J., Zhu, J.L., Xu, D., Liu, X., Sun, H., Wu, D.H. and Wu, N.L. (2006), "Photoinduced currents in carbon nanotube/metal heterojunctions", Appl. Phys. Lett., 88, 131107. https://doi.org/10.1063/1.2189454
  105. Tey, J.N., Ho, X. and Wei, J. (2012), "Effect of doping on single-walled carbon nanotubes network of different metallicity", Nanoscale Res. Lett., 7, 548. https://doi.org/10.1186/1556-276X-7-548
  106. Tombler, T., Zhou, C., Alexeyev, L., Kong, J., Dai, H., Liu, L., Jayanthi, C., Tang, M. and Wu, S. (2000), "Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation", Nature, 405, 769-772. https://doi.org/10.1038/35015519
  107. Tung, R.T. (2000), "Chemical bonding and Fermi level pinning at metal-semiconductor interfaces", Phys. Rev. Lett., 84, 6078-6081. https://doi.org/10.1103/PhysRevLett.84.6078
  108. Tune, D.D., Flavel, B.S., Krupke, R. and Shapter, J. G. (2012), "Carbon nanotube-silicon solar cells", Adv. Energy Mater., 2, 1043-1055. https://doi.org/10.1002/aenm.201200249
  109. Tzolov, M.B., Kuo, T.F., Straus, D.A., Yin, A. and Xu, J. (2007), "Carbon nanotube-silicon heterojunction arrays and infrared photocurrent responses", J. Phys. Chem. C, 111, 5800-5804.
  110. U.S. Department of Energy (2010), $1/W Photovoltaic Systems, 1-28.
  111. Venema, L.C., Janssen, J.W., Buitelaar, M.R., Wildoer, J.W.G., Lemay, S.G., Kouwenhoven, L.P. and Dekker, C. (2000), "Spatially resolved scanning tunneling spectroscopy on single-walled carbon nanotubes", Phys. Rev. B, 62, 5238-5244. https://doi.org/10.1103/PhysRevB.62.5238
  112. Wadhwa, P., Liu, B., McCarthy, M.A., Wu, Z., Rinzler, A.G. (2010), "Electronic junction control in a nanotube-semiconducting Schottky junction solar cell", Nano Lett., 10, 5001-5005. https://doi.org/10.1021/nl103128a
  113. Wang, H., Bai, X., Wei, J., Li, P., Jia, Y., Zhu, H., Wang, K. and Wu, D. (2012), "Preparation of CuI particles and their applications in carbon nanotube-Si heterojunction solar cells", Materials Letters, 79, 106-108. https://doi.org/10.1016/j.matlet.2012.03.114
  114. Wang, S., Khafizov, M., Tu, X., Zheng, M., and Krauss, T.D. (2010), "Multiple exciton generation in single-walled carbon nanotubes", Nano Lett., 10, 2381-2386. https://doi.org/10.1021/nl100343j
  115. Wei, J., Jia,Y., Shu, Q., Gu, Z., Wang, K., Zhuang, D., Zhang, G., Wang, Z., Luo, J., Cao, A. and Wu, D. (2007), "Double-walled carbon nanotube solar cells", Nano Lett., 7, 2317-2321. https://doi.org/10.1021/nl070961c
  116. Wu, Z., Chen, Z., Du, X., Logan, J.M., Sippel, J., Nikolou, M., Kamars, K., Reynolds, J.R., Tanner, D.B., Hebard, A.F. and Rinzler, A.G. (2004), "Transparent, conductive carbon nanotube films", Science, 305, 1273-1276. https://doi.org/10.1126/science.1101243
  117. Zeidenbergs, G. and Anderson, R.L. (1967), "Si-GaP heterojunctions", Solid State Electron., 10, 113-123. https://doi.org/10.1016/0038-1101(67)90028-7
  118. Zhang, Z.B., Li, J., Cabezas, A.L. and Zhang, S.L. (2009), "Characterization of acid-treated carbon nanotube thin films by means of Raman spectroscopy and field effect response", Chem. Phys. Lett., 476, 258-261. https://doi.org/10.1016/j.cplett.2009.06.041
  119. Zhou, C., Kong, J., Yenilmez, E. and Dai, H. (2000), "Modulated chemical doping of individual carbon nanotubes", Science, 290, 1552-1555. https://doi.org/10.1126/science.290.5496.1552
  120. Zhou, H., Colli, A., Ahnood, A., Yang, Y., Rupesinghe, N., Butler, T., Haneef, I., Hiralal, P. and Nathan, A., Amaratunga, G.A.J. (2009), "Arrays of parallel connected coaxial multiwall-carbon-nanotube-amorphous-silicon solar cells", Adv. Mater., 21, 3919-3923. https://doi.org/10.1002/adma.200901094
  121. Zhou, W., Vavro, J., Nemes, N.M., Fischer, J.E., Borondics, F., Kamaras, K. and Tanner, D.B. (2005), "Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes", Phys. Rev. B, 71, 205423. https://doi.org/10.1103/PhysRevB.71.205423

Cited by

  1. Controlling the thickness of carbon nanotube random network films by the estimation of the absorption coefficient vol.95, 2015, https://doi.org/10.1016/j.carbon.2015.07.096
  2. Single walled carbon nanotube/Si heterojunctions for high responsivity photodetectors vol.28, pp.43, 2017, https://doi.org/10.1088/1361-6528/aa8797
  3. A cross-functional nanostructured platform based on carbon nanotube-Si hybrid junctions: where photon harvesting meets gas sensing vol.7, 2017, https://doi.org/10.1038/srep44413
  4. Steering the Efficiency of Carbon Nanotube–Silicon Photovoltaic Cells by Acid Vapor Exposure: A Real-Time Spectroscopic Tracking vol.7, pp.18, 2015, https://doi.org/10.1021/am508973b
  5. Hybridized C–O–Si Interface States at the Origin of Efficiency Improvement in CNT/Si Solar Cells vol.9, pp.19, 2017, https://doi.org/10.1021/acsami.7b01766
  6. Impact of SWCNT processing on nanotube-silicon heterojunctions vol.8, pp.15, 2016, https://doi.org/10.1039/C5NR08703A
  7. Interband optical properties in wide band gap group-III nitride quantum dots vol.3, pp.1, 2015, https://doi.org/10.12989/anr.2015.3.1.013
  8. Carbon nanotube–amorphous silicon hybrid solar cell with improved conversion efficiency vol.27, pp.18, 2016, https://doi.org/10.1088/0957-4484/27/18/185401
  9. Investigating the Effect of Carbon Nanotube Diameter and Wall Number in Carbon Nanotube/Silicon Heterojunction Solar Cells vol.6, pp.3, 2016, https://doi.org/10.3390/nano6030052
  10. Transport properties in aggregates of Nb nanowires templated by carbon nanotube films vol.105, 2016, https://doi.org/10.1016/j.carbon.2016.04.068
  11. Nature of Record Efficiency Fluid-Processed Nanotube–Silicon Heterojunctions vol.119, pp.19, 2015, https://doi.org/10.1021/acs.jpcc.5b02626
  12. Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams vol.7, pp.6, 2019, https://doi.org/10.12989/anr.2019.7.6.391
  13. Investigation of microstructure and surface effects on vibrational characteristics of nanobeams based on nonlocal couple stress theory vol.8, pp.3, 2014, https://doi.org/10.12989/anr.2020.8.3.191
  14. Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM vol.8, pp.4, 2014, https://doi.org/10.12989/anr.2020.8.4.283
  15. Static stability analysis of smart nonlocal thermo-piezo-magnetic plates via a quasi-3D formulation vol.26, pp.1, 2020, https://doi.org/10.12989/sss.2020.26.1.077
  16. Gas Sensing with Solar Cells: The Case of NH 3 Detection through Nanocarbon/Silicon Hybrid Heterojunctions vol.10, pp.11, 2020, https://doi.org/10.3390/nano10112303
  17. Carbon Nanotube Film/Silicon Heterojunction Photodetector for New Cutting-Edge Technological Devices vol.11, pp.2, 2021, https://doi.org/10.3390/app11020606
  18. Surface and interface effects on the current-voltage characteristic curves of multiwall carbon nanotube-Si hybrid junctions selectively probed through exposure to HF vapors and ppm-NO2 vol.129, pp.5, 2014, https://doi.org/10.1063/5.0033552