DOI QR코드

DOI QR Code

Bacillus subtilis Protects Porcine Intestinal Barrier from Deoxynivalenol via Improved Zonula Occludens-1 Expression

  • Gu, Min Jeong (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Song, Sun Kwang (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Park, Sung Moo (WCU Biomodulation major and Center for Food and Bioconvergence, Seoul National University) ;
  • Lee, In Kyu (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Yun, Cheol-Heui (WCU Biomodulation major and Center for Food and Bioconvergence, Seoul National University)
  • 투고 : 2013.11.23
  • 심사 : 2013.12.10
  • 발행 : 2014.04.01

초록

Intestinal epithelial cells (IECs) forming the barrier for the first-line of protection are interconnected by tight junction (TJ) proteins. TJ alteration results in impaired barrier function, which causes potentially excessive inflammation leading to intestinal disorders. It has been suggested that toll-like receptor (TLR) 2 ligands and some bacteria enhance epithelial barrier function in humans and mice. However, no such study has yet to be claimed in swine. The aim of the present study was to examine whether Bacillus subtilis could improve barrier integrity and protection against deoxynivalenol (DON)-induced barrier disruption in porcine intestinal epithelial cell line (IPEC-J2). We found that B. subtilis decreased permeability of TJ and improved the expression of zonula occludens (ZO)-1 and occludin during the process of forming TJ. In addition, ZO-1 expression of IPEC-J2 cells treated with B. subtilis was up-regulated against DON-induced damage. In conclusion, B. subtilis may have potential to enhance epithelial barrier function and to prevent the cells from DON-induced barrier dysfunction.

키워드

참고문헌

  1. Abreu, M. T. 2010. Toll-like receptor signalling in the intestinal epithelium: How bacterial recognition shapes intestinal function. Nat. Rev. Immunol. 10:131-144. https://doi.org/10.1038/nri2707
  2. Aperce, C. C., T. E. Burkey, B. KuKanich, B. A. Crozier-Dodson, S. S. Dritz, and J. E. Minton. 2010. Interaction of bacillus species and salmonella enterica serovar typhimurium in immune or inflammatory signaling from swine intestinal epithelial cells. J. Anim. Sci. 88:1649-1656. https://doi.org/10.2527/jas.2009-2263
  3. Cario, E. 2008. Barrier-protective function of intestinal epithelial toll-like receptor 2. Mucosal Immunol. 1 (Suppl. 1):S62-66. https://doi.org/10.1038/mi.2008.47
  4. Cario, E., G. Gerken, and D. K. Podolsky. 2004. Toll-like receptor 2 enhances zo-1-associated intestinal epithelial barrier integrity via protein kinase C. Gastroenterology 127:224-238. https://doi.org/10.1053/j.gastro.2004.04.015
  5. Cario, E., G. Gerken, and D. K. Podolsky. 2007. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 132:1359-1374. https://doi.org/10.1053/j.gastro.2007.02.056
  6. De Walle, J. V., T. Sergent, N. Piront, O. Toussaint, Y. J. Schneider, and Y. Larondelle. 2010. Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis. Toxicol. Appl. Pharmacol. 245:291-298. https://doi.org/10.1016/j.taap.2010.03.012
  7. Diesing, A. K., C. Nossol, S. Danicke, N. Walk, A. Post, S. Kahlert, H. J. Rothkotter, and J. Kluess. 2011. Vulnerability of polarised intestinal porcine epithelial cells to mycotoxin deoxynivalenol depends on the route of application. PLoS One. 6:e17472. https://doi.org/10.1371/journal.pone.0017472
  8. Ehrlich, K. C. and K. W. Daigle. 1987. Protein synthesis inhibition by 8-oxo-12,13-epoxytrichothecenes. Biochim. Biophys. Acta. 923:206-213. https://doi.org/10.1016/0304-4165(87)90005-5
  9. Eun, C. S., Y. S. Kim, D. S. Han, J. H. Choi, A. R. Lee, and Y. K. Park. 2011. Lactobacillus casei prevents impaired barrier function in intestinal epithelial cells. APMIS 119:49-56. https://doi.org/10.1111/j.1600-0463.2010.02691.x
  10. Groschwitz, K. R. and S. P. Hogan. 2009. Intestinal barrier function: Molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 124:3-20; quiz 21-22. https://doi.org/10.1016/j.jaci.2009.05.038
  11. Guan, Y., A. J. Watson, A. M. Marchiando, E. Bradford, L. Shen, J. R. Turner, and M. H. Montrose. 2011. Redistribution of the tight junction protein zo-1 during physiological shedding of mouse intestinal epithelial cells. Am. J. Physiol. Cell Physiol. 300:C1404-1414. https://doi.org/10.1152/ajpcell.00270.2010
  12. Hong, H. A., H. Duc le, and S. M. Cutting. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29:813-835. https://doi.org/10.1016/j.femsre.2004.12.001
  13. Hu, C. H., K. Xiao, Z. S. Luan, and J. Song. 2013. Early weaning increases intestinal permeability, alters expression of cytokine and tight junction proteins, and activates mitogen-activated protein kinases in pigs. J Anim Sci. 91:1094-1101. https://doi.org/10.2527/jas.2012-5796
  14. Kolf-Clauw, M., J. Castellote, B. Joly, N. Bourges-Abella, I. Raymond-Letron, P. Pinton, and I. P. Oswald. 2009. Development of a pig jejunal explant culture for studying the gastrointestinal toxicity of the mycotoxin deoxynivalenol: Histopathological analysis. Toxicol. In Vitro 23:1580-1584. https://doi.org/10.1016/j.tiv.2009.07.015
  15. Kuo, I. H., A. Carpenter-Mendini, T. Yoshida, L. Y. McGirt, A. I. Ivanov, K. C. Bames, R. L. Gallo, A. W. Borkowski, K. Yamasaki, D. Y. Leung, S. N. Georas, A. De Benedetto, and L. A. Beck. 2013. Activation of epidermal toll-like receptor 2 enhances tight junction function: Implications for atopic dermatitis and skin barrier repair. J. Invest. Dermatol. 133:988-998. https://doi.org/10.1038/jid.2012.437
  16. Ohland, C. L. and W. K. Macnaughton. 2010. Probiotic bacteria and intestinal epithelial barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 298:G807-819. https://doi.org/10.1152/ajpgi.00243.2009
  17. Pestka, J. J. 2008. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food. Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 25:1128-1140. https://doi.org/10.1080/02652030802056626
  18. Pestka, J. J., H. R. Zhou, Y. Moon, and Y. J. Chung. 2004. Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: Unraveling a paradox. Toxicol Lett. 153:61-73. https://doi.org/10.1016/j.toxlet.2004.04.023
  19. Pinton, P., J. P. Nougayrede, J. C. Del Rio, C. Moreno, D. E. Marin, L. Ferrier, A. P. Bracarense, M. Kolf-Clauw, and I. P. Oswald. 2009. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicol. Appl. Pharmacol. 237:41-48. https://doi.org/10.1016/j.taap.2009.03.003
  20. Prelusky, D. B., K. E. Hartin, H. L. Trenholm, and J. D. Miller. 1988. Pharmacokinetic fate of 14C-labeled deoxynivalenol in swine. Fundam. Appl. Toxicol. 10:276-286. https://doi.org/10.1016/0272-0590(88)90312-0
  21. Stevenson, B. R., J. D. Siliciano, M. S. Mooseker, and D. A. Goodenough. 1986. Identification of ZO-1: A high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J. Cell Biol. 103:755-766. https://doi.org/10.1083/jcb.103.3.755
  22. Suzuki, T. 2013. Regulation of intestinal epithelial permeability by tight junctions. Cell. Mol. Life Sci. 70:631-659. https://doi.org/10.1007/s00018-012-1070-x
  23. Turner, J. R. 2009. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9:799-809. https://doi.org/10.1038/nri2653
  24. Ueno, N., M. Fujiya, S. Segawa, T. Nata, K. Moriichi, H. Tanabe, Y. Mizukami, N. Kobayashi, K. Ito, and Y. Kohgo. 2011. Heat-killed body of lactobacillus brevis sbc8803 ameliorates intestinal injury in a murine model of colitis by enhancing the intestinal barrier function. Inflamm. Bowel. Dis. 17:2235-2250. https://doi.org/10.1002/ibd.21597
  25. Wijtten, P. J., J. van der Meulen, and M. W. Verstegen. 2011. Intestinal barrier function and absorption in pigs after weaning: A review. Br. J. Nutr. 105:967-981. https://doi.org/10.1017/S0007114510005660
  26. Yu, L. C., J. T. Wang, S. C. Wei, and Y. H. Ni. 2012. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World J Gastrointest. Pathophysiol. 3:27-43. https://doi.org/10.4291/wjgp.v3.i1.27
  27. Zareie, M., K. Johnson-Henry, J. Jury, P. C. Yang, B. Y. Ngan, D. M. McKay, J. D. Soderholm, M. H. Perdue, and P. M. Sherman. 2006. Probiotics prevent bacterial translocation and improve intestinal barrier function in rats following chronic psychological stress. Gut 55:1553-1560. https://doi.org/10.1136/gut.2005.080739
  28. Zhou, H. R., Z. Islam, and J. J. Pestka. 2003. Rapid, sequential activation of mitogen-activated protein kinases and transcription factors precedes proinflammatory cytokine mRNA expression in spleens of mice exposed to the trichothecene vomitoxin. Toxicol. Sci. 72:130-142. https://doi.org/10.1093/toxsci/kfg006

피인용 문헌

  1. Deoxynivalenol Impairs Weight Gain and Affects Markers of Gut Health after Low-Dose, Short-Term Exposure of Growing Pigs vol.7, pp.6, 2015, https://doi.org/10.3390/toxins7062071
  2. Barrier protection via Toll-like receptor 2 signaling in porcine intestinal epithelial cells damaged by deoxynivalnol vol.47, pp.1, 2016, https://doi.org/10.1186/s13567-016-0309-1
  3. The intestinal barrier as an emerging target in the toxicological assessment of mycotoxins vol.91, pp.3, 2017, https://doi.org/10.1007/s00204-016-1794-8
  4. Effects of oxidative stress induced by high dosage of dietary iron ingested on intestinal damage and caecal microbiota in Chinese Yellow broilers vol.102, pp.4, 2018, https://doi.org/10.1111/jpn.12885
  5. A novel expression vector for the secretion of abaecin in Bacillus subtilis vol.48, pp.4, 2017, https://doi.org/10.1016/j.bjm.2017.01.009
  6. Effect of Compound Probiotics and Mycotoxin Degradation Enzymes on Alleviating Cytotoxicity of Swine Jejunal Epithelial Cells Induced by Aflatoxin B1 and Zearalenone vol.11, pp.1, 2019, https://doi.org/10.3390/toxins11010012
  7. Tight Junction Proteins in the Weaned Piglet Intestine: Roles and Regulation vol.20, pp.7, 2014, https://doi.org/10.2174/1389203720666190125095122
  8. Effect of Bacillus subtilis Strains on Intestinal Barrier Function and Inflammatory Response vol.10, pp.None, 2014, https://doi.org/10.3389/fimmu.2019.00564
  9. Beneficial Effects of Rosmarinic Acid on IPEC-J2 Cells Exposed to the Combination of Deoxynivalenol and T-2 Toxin vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8880651
  10. Effects of an F18 enterotoxigenic Escherichia coli challenge on growth performance, immunological status, and gastrointestinal structure of weaned pigs and the potential protective effect of direct- vol.98, pp.5, 2020, https://doi.org/10.1093/jas/skaa113
  11. Potential Probiotic Bacillus subtilis Isolated from a Novel Niche Exhibits Broad Range Antibacterial Activity and Causes Virulence and Metabolic Dysregulation in Enterotoxic E. coli vol.9, pp.7, 2021, https://doi.org/10.3390/microorganisms9071483
  12. Fermentation products of Danshen relieved dextran sulfate sodium-induced experimental ulcerative colitis in mice vol.11, pp.1, 2014, https://doi.org/10.1038/s41598-021-94594-7