DOI QR코드

DOI QR Code

The Expression of Leptin, Estrogen Receptors, and Vitellogenin mRNAs in Migrating Female Chum Salmon, Oncorhynchus keta: The Effects of Hypo-osmotic Environmental Changes

  • Choi, Young Jae (Division of Marine Environment and BioScience, Korea Maritime and Ocean University) ;
  • Kim, Na Na (Division of Marine Environment and BioScience, Korea Maritime and Ocean University) ;
  • Shin, Hyun Suk (Division of Marine Environment and BioScience, Korea Maritime and Ocean University) ;
  • Choi, Cheol Young (Division of Marine Environment and BioScience, Korea Maritime and Ocean University)
  • Received : 2013.09.22
  • Accepted : 2013.12.03
  • Published : 2014.04.01

Abstract

Leptin plays an important role in energy homeostasis and reproductive function in fish, especially in reproduction. Migrating fish, such as salmonoids, are affected by external environmental factors, and salinity changes are a particularly important influence on spawning migrations. The aim of this study was to test whether changes in salinity affect the expression of leptin, estrogen receptors (ERs), and vitellogenin (VTG) in chum salmon (Oncorhynchus keta). The expression and activity of leptin, the expression of ERs and VTG, and the levels of estradiol-$17{\beta}$ and cortisol increased after the fish were transferred to FW, demonstrating that changes in salinity stimulate the HPG axis in migrating female chum salmon. These findings reveal details about the role of elevated leptin levels and sex steroid hormones in stimulating sexual maturation and reproduction in response to salinity changes in chum salmon.

Keywords

References

  1. Bowman, C. J., K. J. Kroll, T. G. Gross, and N. D. Denslow. 2002. Estradiol-induced gene expression in largemouth bass (Micropterus salmoides). Mol. Cell. Endocrinol. 196:67-77. https://doi.org/10.1016/S0303-7207(02)00224-1
  2. Cella, F., G. Giordano, and R. Cordera. 2000. Serum leptin concentrations during the menstrual cycle in normal-weight women: effects of an oral triphasic estrogen-progestin medication. Eur. J. Endocrinol. 142:174-178. https://doi.org/10.1530/eje.0.1420174
  3. Cooperman, M. C., S. G. Hinch, G. T. Crossin, S. J. Cooke, D. A. Patterson, I. Olsson, A. Lotto, D. Welch, J. M. Shrimpton, A. P. Farrell, and G. van der Kraak. 2010. Effects of experimental manipulations of salinity and maturation status on the physiological condition and mortality of homing adult sockeye salmon held in a laboratory. Physiol. Biochem. Zool. 83:459-472. https://doi.org/10.1086/650473
  4. Copeland, D. L., R. J. Duff, Q. Liu, J. Prokop, and R. L. Londraville. 2011. Leptin in teleost fishes: an argument for comparative study. Front. Physiol. 2:26.
  5. Crossin, G. T., S. G. Hinch, A. P. Farrell, D. A. Higgs, A. G. Lotto, J. D. Oakes, and M. C. Healey. 2004. Energetics and morphology of sockeye salmon: effects of upriver migratory distance and elevation. J. Fish Biol. 65:788-810. https://doi.org/10.1111/j.0022-1112.2004.00486.x
  6. Davis, L. K., N. Visitacion, L. Riley, N. Hiramatsu, C. Sullivan, T. Hirano, and E. Gordon Grau. 2009. Effects of o,p'-DDE, heptachlor, and $17{\beta}$-estradiol on vitellogenin gene expression and the growth hormone/insulin-like growth factor-I axis in the tilapia, Oreochromis mossambicus. Comp. Biochem. Physiol C. 149: 507-514.
  7. De Pedro, N. and B. T. Bjornsson. 2001. Regulation of food intake by neuropeptides and hormones. In: Food intake in fish (Ed. D. Houlihan, T. Boujard, and M. Jobling). Blackwell Science, Oxford, UK. pp. 269-296.
  8. Denver, R. J., R. M. Bonnett, and G. C. Boorse. 2011. Evolution of leptin structure and function. Neuroendocrinology 94:21-38. https://doi.org/10.1159/000328435
  9. Duncan, N. J., C. Selkirk, M. Porter, S. Magwood, and N. Bromage. 2000. The effect of altered photoperiods on maturation of male and female Atlantic salmon (Salmo salar), observations of different responses and mechanisms. In: Proceedings of the 6th International Symposium on the Reproductive Physiology of Fish (Ed. B. Norberg, O. S. Kjesbu, G. L. Taranger, E. Andersson, and S. O. Stefansson). Bergen, Norway. pp. 344.
  10. Froiland, E., K. Murashita, E. H. Jorgensen, and T. Kurokawa. 2010. Leptin and ghrelin in anadromous Arctic charr: cloning and change in expressions during a seasonal feeding cycle. Gen. Comp. Endocrinol. 165:136-143. https://doi.org/10.1016/j.ygcen.2009.06.010
  11. Hendry, A. P. and O. K. Berg. 1999. Secondary sexual characteristics, energy use, senescence, and the cost of reproduction in sockeye salmon. Can. J. Zool. 77:1663-1675. https://doi.org/10.1139/z99-158
  12. Hirano, T., T. Ogasawara, J. P. Bolton, N. L. Collie, S. Hasegawa, and M. Iwata. 1987. Osmoregulatory role of prolactin in lower vertebrates. In: Comparative Physiology and Environmental Adaptations. vol. 1. (Ed. R. Kirsch, and B. Lahlou). Karger, Basel, Swiss. pp. 112-124.
  13. Hirano, T., T. Ogasawara, S. Hasegawa, M. Iwata, and Y. Nagahama. 1990. Changes in plasma hormone levels during loss of hypoosmoregulatory capacity in mature chum salmon (Oncorhynchus keta) kept in seawater. Gen. Comp. Endocrinol. 78:254-262. https://doi.org/10.1016/0016-6480(90)90012-B
  14. Ishibashi, O. and H. Kawashima. 2001. Cloning and characterization of the functional promoter of mouse estrogen receptor beta gene. Biochim. Biophys. Acta 1519:223-229. https://doi.org/10.1016/S0167-4781(01)00232-9
  15. Kikuchi, N., K. Andoh, Y. Abe, K. Yamada, H. Mizunuma, and Y. Ibuki. 2001. Inhibitory action of leptin on early follicular growth differs in immature and adult female mice. Biol. Reprod. 65: 66-71. https://doi.org/10.1095/biolreprod65.1.66
  16. Kim, N. N., H. S. Shin, Y. J. Choi, Y. Yamamoto, K. Fukaya, H. Ueda, and C. Y. Choi. 2013. Effect of hypo-osmotic environmental changes on the expression of gonadotropin-releasing hormone, its receptor, and gonadotropin hormone subunit mRNA in adult chum salmon (Oncorhynchus keta). Mar. Freshw. Behav. Physiol. 45:397-410. https://doi.org/10.1080/10236244.2013.777215
  17. Laurent, P. and S. F. Perry. 1990. The effects of cortisol on gill chloride cell morphology and ionic uptake on the freshwater trout, Salmo gairdneri. Cell Tissue Res. 259:429-442. https://doi.org/10.1007/BF01740769
  18. Maffei, M., J. Halaas, E. Ravussin, R. E. Pratley, G. H. Lee, Y. Zhang, H. Fei, S. Kim, R. Lallone, and S. Ranganathan. 1995. Leptin levels in human and rodent: measurement of plasma leptin and obRNA in obese and weight-reduced subjects. Nat. Med. 1: 1155-1161. https://doi.org/10.1038/nm1195-1155
  19. Makino, K., T. A. Onuma, T. Kitahashi, H. Ando, M. Ban, and A. Urano. 2007. Expression of hormone genes and osmoregulation in homing chum salmon: a mini review. Gen. Comp. Endocrinol. 152:304-309. https://doi.org/10.1016/j.ygcen.2007.01.010
  20. Meucci, V. and A. Arukwe. 2006. Transcriptional modulation of brain and hepatic estrogen receptor and P450-arom isotypes in juvenile Atlantic salmon (Salmo salar) after waterborne exposure to the xenoestrogen, 4-nonylphenol. Aquat. Toxicol. 77:167-177. https://doi.org/10.1016/j.aquatox.2005.11.008
  21. Nagasaka, R., N. Okamoto, and H. Ushio. 2006. Increased leptin may be involved in the short life span of ayu (Plecoglossus altivelis). J. Experimen. Zool. Part A. 305:507-512.
  22. Nagahama, Y., M. Yoshikuni, M. Yamashita, T. Tokumoto, and Y. Katsu. 1995. Regulation of oocyte growth and maturation in fish. Curr. Top. Dev. Biol. 30: 103-145. https://doi.org/10.1016/S0070-2153(08)60565-7
  23. Onuma, T. A., M. Higa, H. Ando, M. Ban, and A. Urano. 2005. Elevation of gene expression for salmon gonadotropin-releasing hormone in discrete brain loci of prespawning chum salmon during upstream migration. J. Neurobiol. 63:126-145. https://doi.org/10.1002/neu.20125
  24. Onuma, T. A., S. Sato, H. Katsumata, K. Makino, W. Hu, A. Jodo, N. D. Davis, J. T. Dickey, M. Ban, H. Ando, M. Fukuwaka, T. Azumaya, P. Swanson, and A. Urano. 2009. Activity of the pituitary-gonadal axis is increased prior to the onset of spawning migration of chum salmon. J. Exp. Biol. 212:56-70. https://doi.org/10.1242/jeb.021352
  25. Pankhurst, N. W. and P. M. Thomas. 1998. Maintenance at elevated temperature delays the steroidogenic and ovulatory responsiveness of rainbow trout Oncorhynchus mykiss to luteinizing hormone releasing hormone analogue. Aquaculture 166:163-177. https://doi.org/10.1016/S0044-8486(98)00284-1
  26. Rayner, D. V. and P. Trayhurn. 2001. Regulation of leptin production: sympathetic nervous system interactions. J. Mol. Med. 79:8-20. https://doi.org/10.1007/s001090100198
  27. Ronnestad, I., T. O. Nilsen, K. Murashita, A. R. Angotzi, A. G. Gamst Moen, S. O. Stefansson, P. Kling, B. Thrandur Bjornsson, and T. Kurokawa. 2013. Leptin and leptin receptor genes in Atlantic salmon: cloning, phylogeny, tissue distribution and expression correlated to long-term feeding status. Gen. Comp. Endocrinol. 168:55-70.
  28. Ryffel, G. U. 1978. Synthesis of vitellogenin, an attractive model for investigating hormone-induced gene activation. Mol. Cell. Endocrinol. 12:237-246. https://doi.org/10.1016/0303-7207(78)90082-5
  29. Sabo-Attwood, T., K. J. Kroll, and N. D. Denslow. 2004. Differential expression of largemouth bass (Micropterus salmoides) estrogen receptor isotypes alpha, beta, and gamma by estradiol. Mol. Cell. Endocrinol. 218:107-118. https://doi.org/10.1016/j.mce.2003.12.007
  30. Sahu, A. 2004. Leptin signalling in the hypothalamus: emphasis on energy homeostasis and leptin resistance. Front. Neuroendocrinol. 24:225-253.
  31. Slater, C. H., C. B. Schreck, and D. F. Amend. 1995. GnRHa injection accelerates final maturation and ovulation/ spermiation of sockeye salmon (Oncorhynchus nerka) in both fresh and salt water. Aquaculture 130:279-285. https://doi.org/10.1016/0044-8486(94)00320-N
  32. Swanson, P., J. T. Dickey, and B. Campbell. 2003. Biochemistry and physiology of fish gonadotropins. Fish Physiol. Biochem. 28: 53-59. https://doi.org/10.1023/B:FISH.0000030476.73360.07
  33. Trombley, S. and N. Schmitz. 2013. Leptin in fish: possible role in sexual maturation in male Atlantic salmon. Fish Physiol. Biochem. 39:103-106. https://doi.org/10.1007/s10695-012-9731-0
  34. Tyler, C. R. and J. P. Sumpter. 1996. Oocyte growth and development in teleosts. Rev. Fish Biol. Fish. 6:287-318. https://doi.org/10.1007/BF00122584
  35. Ueda, H. 2011. Physiological mechanism of homing migration in Pacific salmon from behavioral to molecular biological approaches. Gen. Comp. Endocrinol. 170:222-232. https://doi.org/10.1016/j.ygcen.2010.02.003
  36. Urano, A., H. Ando, and H. Ueda. 1999. Molecular neuroendocrine basis of spawning migration in salmon. In: Recent Progress in Molecular and Comparative Endocrinology. (Ed. H. B. Kwon, J. M. P. Joss, and S. Ishi). Horm. Res. Center, Kwangju, Korea. pp. 46-56.
  37. Volkoff, H., L. F. Canosa, S. Unniappan, J. M. Cerda-Reverter, N. J. Bernier, S. P. Kelly, and R. E. Peter. 2005. Neuropeptides and the control of food intake in fish. Gen. Comp. Endocrinol. 142:3-19. https://doi.org/10.1016/j.ygcen.2004.11.001
  38. Weil, C., P. Y. Le Bail, N. Sabin, and F. Le Gac. 2003. In vitro action of leptin on FSH and LH production in rainbow trout (Onchorynchus mykiss) at different stages of the sexual cycle. Gen. Comp. Endocrinol. 130:2-12. https://doi.org/10.1016/S0016-6480(02)00504-X
  39. Zhang, Y., R. Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372:425-432. https://doi.org/10.1038/372425a0
  40. Zhou, B., S. P. Kelly, and C. M. Wood. 2004. Response of developing cultured freshwater gill epithelia to gradual apical media dilution and hormone supplementation. J. Exp. Zool. A Comp. Exp. Biol. 301:867-881.

Cited by

  1. (Heckel, 1843) vol.99, pp.3, 2014, https://doi.org/10.1111/jpn.12271
  2. Genetic basis of adult migration timing in anadromous steelhead discovered through multivariate association testing vol.283, pp.1830, 2016, https://doi.org/10.1098/rspb.2015.3064
  3. Selection at a genomic region of major effect is responsible for evolution of complex life histories in anadromous steelhead vol.18, pp.1, 2018, https://doi.org/10.1186/s12862-018-1255-5
  4. The genetics and epigenetics of animal migration and orientation: birds, butterflies and beyond vol.222, pp.Suppl 1, 2019, https://doi.org/10.1242/jeb.191890
  5. Distribution of genetic variation underlying adult migration timing in steelhead of the Columbia River basin vol.10, pp.17, 2014, https://doi.org/10.1002/ece3.6641
  6. Leptin Gene Protects Against Cold Stress in Antarctic Toothfish vol.12, pp.None, 2021, https://doi.org/10.3389/fphys.2021.740806