DOI QR코드

DOI QR Code

온라인 소셜 네트워크에서 구조적 파라미터를 위한 확산 모델

Propagation Models for Structural Parameters in Online Social Networks

  • Kong, Jong-Hwan (Depart of Computer Engineering, Gachon University) ;
  • Kim, Ik Kyun (Cyber Security Research Division, Electronics and Telecommunications Research Institute) ;
  • Han, Myung-Mook (Depart of Computer Engineering, Gachon University)
  • 투고 : 2013.12.05
  • 심사 : 2013.12.31
  • 발행 : 2014.02.28

초록

단순한 소통 미디어였던 소셜 미디어가 최근에는 트위터, 페이스북을 중심으로 활성화되면서 소셜 네트워크 서비스의 활용 및 중요성이 점차 커지고 있다. 기업들은 소셜 네트워크의 빠른 정보 확산 능력을 통해 마케팅에 적극 활용하고 있지만, 정보 확산 능력이 커지면서 이에 대한 역기능 또한 증가하고 있다. 소셜 네트워크는 사용자들의 친분 및 관계를 기반으로 형성되고 소통하기 때문에 스팸, 악성코드 유포에 대한 효과 및 확산 속도가 매우 빠르다. 이에 본 논문에서는 소셜 네트워크 환경에서 악성 데이터 확산에 영향을 미치는 파라미터들을 도출하고, XSS Worm과 Koobface Worm의 확산 실험을 통해 각각의 파라미터들의 확산 능력을 비교 분석한다. 또한, 소셜 네트워크 환경에서의 구조적 특징을 고려하여 정보 확산에 영향을 미치는 파라미터에 기반 한 악성 데이터 확산 모델을 제안한다. 본 논문이 제안하는 방법의 실험을 위해 역학 모델인 SI 모델을 기반으로 BA모델과 HK모델을 구성하여 실험을 진행하고, 실험의 결과로 XSS Worm과 Koobface Worm의 확산에 영향을 미치는 파라미터는 군집도와 근접 중심성임을 확인할 수 있었다.

As the social media which was simple communication media is activated on account of twitter and facebook, it's usability and importance are growing recently. Although many companies are making full use of its the capacity of information diffusion for marketing, the adverse effects of this capacity are growing. Because social network is formed and communicates based on friendships and relationships, the spreading speed of the spam and mal-ware is very swift. In this paper, we draw parameters affecting malicious data diffusion in social network environment, and compare and analyze the diffusion capacity of each parameters by propagation experiment with XSS Worm and Koobface Worm. In addition, we discuss the structural characteristics of social network environment and then proposed malicious data propagation model based on parameters affecting information diffusion. n this paper, we made up BA and HK models based on SI model, dynamic model, to conduct the experiments, and as a result of the experiments it was proved that parameters which effect on propagation of XSS Worm and Koobface Worm are clustering coefficient and closeness centrality.

키워드

참고문헌

  1. Faghani, Mohammad Reza, and Hossein Saidi. "Malware propagation in online social networks." Malicious and Unwanted Software (MALWARE), 2009 4th International Conference on. IEEE, 2009.
  2. Faghani, Mohammad Reza, and Hossein Saidi. "Social networks' XSS worms." Computational Science and Engineering, CSE'09. International Conference on. Vol. 4. IEEE, 2009.
  3. Faghani, Mohammad Reza, Ashraf Matrawy, and Chung-Horng Lung. "A Study of Trojan Propagation in Online Social Networks." New Technologies, Mobility and Security(NTMS), 2012 5th International Conference on. IEEE, 2012.
  4. Zou, Cliff Changchun, Weibo Gong, and Don Towsley. "Code red worm propagation modeling and analysis." Proceedings of the 9th ACM conference on Computer and communications security. ACM, 2002.
  5. Su, Fei, Zhao-Wen Lin, and Yan Ma. "Modeling and analysis of Internet worm propagation." The Journal of China Universities of Posts and Telecommunications 17.4. 63-68, 2010.
  6. Mannan, Mohammad, and Paul C. van Oorschot. "On instant messaging worms, analysis and countermeasures." Proceedings of the 2005 ACM workshop on Rapid malcode. ACM, 2005.
  7. Barabasi, Albert-Laszlo, and Reka Albert. "Emergence of scaling in random networks." science 286.5439 , 509-512, 1999. https://doi.org/10.1126/science.286.5439.509
  8. Holme, Petter, and Beom Jun Kim. "Growing scale-free networks with tunable clustering." Physical Review E 65.2, 026107, 2002. https://doi.org/10.1103/PhysRevE.65.026107
  9. Zou, Cliff Changchun, Don Towsley, and Weibo Gong. "Modeling and simulation study of the propagation and defense of internet e-mail worms." Dependable and Secure Computing, IEEE Transactions on 4.2, 105-118. 2007. https://doi.org/10.1109/TDSC.2007.1001
  10. Wu, Xiaoyan, and Zonghua Liu. "How community structure influences epidemic spread in social networks." Physica A: Statistical Mechanics and its Applications 387.2, 623-630, 2008. https://doi.org/10.1016/j.physa.2007.09.039
  11. Grossman, Jeremiah (July 30, 2006). "The origins of Cross-Site Scripting (XSS)". Retrieved September 15, 2008.
  12. Moreno, Yamir, Romualdo Pastor-Satorras, and Alessandro Vespignani. "Epidemic outbreaks in complex heterogeneous networks." The European Physical Journal B-Condensed Matter and Complex Systems 26.4, 521-529, 2002.
  13. Yan, Guanhua, et al. "Malware propagation in online social networks: nature, dynamics, and defense implications." Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security. ACM, 2011.
  14. Kyung-moon Woo, Chong-kwon Kim. "Internet Worm Propagation Modeling using a Statistical Method". The Korean Institute of Communication and Information Sciences. vol.37B, 2012. https://doi.org/10.7840/KICS.2012.37B.3.212
  15. Thomas, Kurt, and David M. Nicol. "The Koobface botnet and the rise of social malware." Malicious and Unwanted Software (MALWARE), 2010 5th International Conference on. IEEE, 2010.
  16. Milgram, Stanley. "The small world problem." Psychology today 2.1, 60-67, 1967.
  17. Watts, Duncan J., and Steven H. Strogatz. "Collective dynamics of 'small-world'networks." nature 393.6684 440-442, 1998. https://doi.org/10.1038/30918
  18. Benevenuto, Fabricio, et al. "Characterizing user behavior in online social networks." Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference. ACM, 2009.
  19. Xu, Wei, Fangfang Zhang, and Sencun Zhu. "Toward worm detection in online social networks." Proceedings of the 26th Annual Computer Security Applications Conference. ACM, 2010.