DOI QR코드

DOI QR Code

A Postharvest Control Technique of the Oriental Fruit Moth, Grapholita molesta, Infesting Apples Using CATTS

CATTS를 이용한 복숭아순나방 사과 수확 후 방제 기술

  • Received : 2013.10.14
  • Accepted : 2014.01.20
  • Published : 2014.03.01

Abstract

Postharvest insect pest control is necessary for agricultural industry including domestic consumer markets and exporting products to meet quarantine issue. Especially, the organic or environmentally friendly agricultural products do not fit to the traditional chemical postharvest treatments mostly using methyl bromide. As an alternative, a physical treatment called CATTS (controlled atmosphere and temperature treatment) has been developed to control various insect and mite pests on apple and several stone fruits. This study was designed to determine the CATTS conditions to control the oriental fruit moth, Grapholita molesta, which is restricted in exporting the infested apples. To apply CATTS on this insect pest, the most heat-tolerant stage was determined. Among the immature stages locating on the fruits, the fifth instar larvae were the most tolerant to $44^{\circ}C$ for 20 min. The ramping rate (the time to increase chamber temperature from $25^{\circ}C$ to $46^{\circ}C$) was positively correlated with the CATTS efficiency under 15% $CO_2$ and 1% $O_2$. After the ramping step, the duration of CATTS was positively correlated with CATTS efficiency. In addition, the CATTS efficiency was highly dependent on the fruit internal temperature at $44^{\circ}C$. From all these parameters, we developed a standard protocol yielding 100% control efficiency of CATTS against apples infested by 4,378 larvae including 2,104 fifth instar individuals.

수확 후 해충방제가 국내 수요 농산물은 물론이고 검역 문제를 해결하기 위한 수출용 농산물에 대해서 요구되고 있다. 특별히 유기 농산물 또는 환경친화형 재배 농산물에 대해서 메틸브로마이드와 같은 화합물을 이용한 기존의 수확 후 처리기술은 의미를 잃게 되었다. 대체 기술로서 CATTS (환경조절열처리기술)라 명명된 물리적 처리기술이 개발되어 사과와 여러 핵과류 과실을 가해하는 곤충과 응애에 적용되고 있다. 본 연구는 국내 사과 수출을 위해 수입국에서 규제하는 복숭아순나방(Grapholita molesta)을 대상으로 CATTS 처리 조건을 결정하는 데 목표를 두었다. 이 해충에 CATTS를 적용하기 위해 사과 과실에 잔류하면서 열에 높은 내성을 보이는 발육시기를 분석하였다. 열처리 조건($44^{\circ}C$, 20분)에서 5령 유충이 가장 높은 내성을 보였다. 환경조건(15% $CO_2$, 1% $O_2$)에서 기기 내부 온도가 $25^{\circ}C$에서 $46^{\circ}C$까지 증가하는 시기를 CATTS 가열단계로 볼 때, 이 가열 속도가 빠를수록 CATTS 해충 방제 효과가 높았다. 또한 가열단계 후 CATTS 처리 시간이 길수록 CATTS 효율이 증가했다. 특히 가열단계에서 과실 내부온도가 $44^{\circ}C$로 이르게 하는 것이 CATTS 효율을 높이는 데 결정적이었다. 이러한 조건들을 종합하여 CATTS 표준 처리기술을 결정하였으며, 이 기술은 2,104 마리의 5령을 포함한 4,378 마리 복숭아순나방 유충 피해를 받은 사과에 대해서 100% 방제 효과를 나타냈다.

Keywords

References

  1. Ahn, S.B., Koh, H.W., Lee, Y.I., 1985. Study on apple pests and natural enemy. Res. Rept. RDA. Crop Protection pp. 417-428.
  2. Butz, P., Tauscher, B., 1995. Inactivation of fruit fly eggs by high pressure treatment. J. Food Process. Preserv. 19, 161-164. https://doi.org/10.1111/j.1745-4549.1995.tb00285.x
  3. Carpenter, A., Potter, M., 1994. Controlled atmospheres, in: Sharp, J.L., Hallman, G.J. (Eds.), Quarantine treatments for pests and food plants. Westview, Boulder, CO., pp. 171-198.
  4. Chapman, D., 1967. The effect of heat on membrane and membrane constituents, in: Rose, A.H., (Ed.), Thermobiology. Academic, NY. pp. 123-146.
  5. Chen, H., Xu, X.L., Li, Y.P., Wu, J.X., 2013. Characterization of heat shock protein 90, 70 and their transcriptional expression patterns on high temperature in adult of Grapholita molesta (Busck). Insect Sci. doi: 10.1111/1744-7917.
  6. Choi, K.H., Lee, D.H., Byun, B.K., Mochizuki, F., 2009. Occurrence of Grapholita dimorpha Komai (Lepidoptera: Tortricidae), a new insect pest in apple orchards of Korea. Kor. J. Appl. Entomol. 48, 417-421. https://doi.org/10.5656/KSAE.2009.48.4.417
  7. Edwards, L.J., 1968. Carbon dioxide anaesthesia and succinic dehydrogenase in the corn earworm, Heliothis zea. J. Insect Physiol. 14, 1045-1048. https://doi.org/10.1016/0022-1910(68)90041-3
  8. Fleurat-Lessard, F., 1990. Effect of modified atmospheres on insects and mites infesting stored products. pp. 21-38. In Food preservation by modified atmosphere. eds. by M. Calderon, R. Barkai-Golan. CRC, Boca Raton, FL.
  9. Follett, P.A., Neven, L.G., 2006. Current trends in quarantine entomology. Annu. Rev. Entomol. 51, 359-385. https://doi.org/10.1146/annurev.ento.49.061802.123314
  10. Hochachka, P.W., Somero, G.N., 1984. Biochemical Adaptation. Princeton University Press, Princeton, NJ.
  11. Hoffman, K.H., 1985. Metabolic and enzyme adaptation to temperature. pp. 1-32. In Environmental physiology and biochemistry of insects. eds. K.H. Hoffman. Springer, NY.
  12. Hollingsworth, R.G., Armstrong, J.W., 2005. Potential of temperature, controlled atmospheres, and ozone fumigation to control thrips and mealybugs on ornamental plants for export. J. Econ. Entomol. 98, 289-298. https://doi.org/10.1603/0022-0493-98.2.289
  13. Ikediala, J.N., Tang, J., Neven, L.G., Drake, S.R., 1999. Quarantine treatment of cherries using 915 MHz microwaves: temperature mapping, codling moth mortality and fruit quality. Postharvest Biol. Technol. 16, 127-137. https://doi.org/10.1016/S0925-5214(99)00018-6
  14. Jung, C.R., Kim, Y., 2011. Different types of fruit damages of three internal apple feeders diagnosed with mitochondrial molecular markers. J. Asia Pac. Entomol. 16, 189-197. https://doi.org/10.1016/j.aspen.2013.01.008
  15. Kanga, L.H.B., Pree, D.J., Plapp, Jr., F.W., van Lier, J.L., 2001. Sex-linked altered acetylcholinesterase resistance to carbamate insecticides in adults of the oriental fruit moth, Grapholita molesta (Lepidoptera; Tortricidae). Pestic. Biochem. Physiol. 71, 29-39. https://doi.org/10.1006/pest.2001.2562
  16. Kells, S.A., Mason, L.J., Maier, D.E., Woloshuk, C.P., 2001. Efficacy ad fumigation characteristics of ozone in stored maize. J. Stored Prod. Res. 37, 371-382. https://doi.org/10.1016/S0022-474X(00)00040-0
  17. Koval, T.M., 1994. Intrinsic stress resistance of cultured Lepidopteran cells. pp. 157-185. In Insect cell biotechnology. eds. by K. Maramorosch, A. McIntosh. CRC, Boca Raton, FL.
  18. Liu, Y.B., 2003. Effects of vacuum and controlled atmosphere on insect mortality and lettuce quality. J. Econ. Entomol. 96, 1110-1117.
  19. Nelson, S.O., 1996. Review and assessment of radio-frequency and microwave energy for stored-grain insect control. Trans. ASAE 39, 1475-1484. https://doi.org/10.13031/2013.27641
  20. Neven, L.G., 2008a. Organic quarantine treatment for tree fruits. HortScience 43, 22-26.
  21. Neven, L.G., 2008b. Development of a model system for rapid assessment of insect mortality in heated controlled atmosphere quarantine treatments. J. Econ. Entomol. 101, 295-301. https://doi.org/10.1603/0022-0493(2008)101[295:DOAMSF]2.0.CO;2
  22. Neven, L.G., Drake, S.R., 2000. Comparison of alternative quarantine treatments for sweet cherries. Postharvest Biol. Technol. 20, 107-114. https://doi.org/10.1016/S0925-5214(00)00110-1
  23. Neven, L.G., Drake, S.R., Shellie, K., 2001. Development of a high temperature controlled atmosphere quarantine treatment for pome and stone fruits. Acta Hortic. 553, 457-460.
  24. Neven, L.G., Follett, P.A., Raghubeer, E., 2007. Potential for high hydrostatic pressure processing to control quarantine insects in fruit. J. Econ. Entomol. 100, 1499-1503. https://doi.org/10.1603/0022-0493(2007)100[1499:PFHHPP]2.0.CO;2
  25. Neven, L.G., Hansen, L.D., 2010. Effects of temperature and controlled atmospheres on codling moth metabolism. Ann. Entomol. Soc. Am. 103, 418-423. https://doi.org/10.1603/AN09133
  26. Neven, L.G., Mitcham, E.J., 1996. CATTS: controlled atmosphere temperature treatment system, a novel approach to the development of quarantine treatments. Am. Entomol. 42, 56-59. https://doi.org/10.1093/ae/42.1.56
  27. Neven, L.G., Rehfield-Ray, L., 1995. Comparison of prestorage heat treatments on fifth-instar codling moth (Lepidoptera: Tortricidae) mortality. J. Econ. Entomol. 88, 1371-1375. https://doi.org/10.1093/jee/88.5.1371
  28. Neven, L.G., Rehfield-Ray, L., 2006a. Combined heat and controlled atmosphere quarantine treatments for control of western cherry fruit fly in sweet cherries. J. Econ. Entomol. 99, 658-663. https://doi.org/10.1603/0022-0493-99.3.658
  29. Neven, L.G., Rehfield-Ray, L., 2006b. Confirmation and efficacy tests against codling moth and oriental fruit moth in apples using combination heat and controlled atmosphere treatments. J. Econ. Entomol. 99, 1620-1627. https://doi.org/10.1603/0022-0493-99.5.1620
  30. Neven, L.G., Rehfield-Ray, L., Obenland, D., 2006. Confirmation and efficacy tests against codling moth and oriental fruit moth in peaches and nectarines using combination heat and controlled atmosphere treatments. J. Econ. Entomol. 99, 1610-1616. https://doi.org/10.1603/0022-0493-99.5.1610
  31. Nikam, T.B., Khole, V.V., 1989. Insect spiracular systems. Wiley, NY.
  32. NOP (National Organic Program), 2007. National Organic Program. http://www.ams.usda.gov/nop/indexIE.htm.
  33. Obenland, D., Neipp, P., Mackey, B., Neven, L.G., 2005. Peach and nectarine quality following treatment with high temperature forced air combined with controlled atmospheres. HortScience 40, 1425-1430.
  34. Paull, R.E., Armstrong, J.W., 1994. Insect pests and fresh horticultural products: treatments and responses. CAB International, Wallingford, UK.
  35. Pimentel D., Lach, L., Zuniga, R., Morrison, D., 2002. Environmenta l and economic costs of alien arthropods and other organisms in the United States. pp. 285-303. In Invasive arthropods in agriculture:problems and solutions. eds. by G.J. Hallman, C.P. Schwalbe. Science, Enfield, NH.
  36. Pree, D.J., Whitty, K.J., van Driel, L., Walker, G.M., Van Driel, L., 1998. Resistance to insecticides in oriental fruit moth populations (Grapholita molesta) from the Niagara Peninsula of Ontario. Can. Entomol. 130, 245-256. https://doi.org/10.4039/Ent130245-3
  37. Sharp, J.L., Hallman, G.J., 1994. Quarantine treatments for pests and food plants. Westview, Boulder, CO.
  38. Son, Y., Choi, K.H., Kim, Y., Kim, Y., 2010. Application of CATTS as a postharvest phytosanitation technology against the peach fruit moth, Carposina sasakii Matsumura. Kor. J. Appl. Entomol. 49, 37-42. https://doi.org/10.5656/KSAE.2010.49.1.037
  39. Son, Y., Chon, I., Neven, L., Kim, Y., 2012a. Controlled atmosphere and temperature treatment system to disinfest fruit moth, Carposina sasakii (Lepidoptera: Carposinidae) on apples. J. Econ. Entomol. 105, 1540-1547. https://doi.org/10.1603/EC12133
  40. Son, Y., Lee, J., Kim, Y., 2012b. Controlled efficacy of controlled atmosphere and temperature treatment system against the hawthorn spider mite, Tetranychus viennensis. Kor. J. Appl. Entomol. 51, 131-140. https://doi.org/10.5656/KSAE.2012.04.0.08
  41. Song, S., Choi, K., Lee, S., Kim, Y., 2007. DNA markers applicable for identification of two internal apple feeders, Grapholita molesta and Carposina sasakii. Kor. J. Appl. Entomol. 46, 175-182. https://doi.org/10.5656/KSAE.2007.46.2.175
  42. Tang, J., Ikediala, J.N., Wang, S., Hansen, J.D., Cavalieri, R.P., 2000. High-temperature short-time thermal quarantine methods. Postharvest Biol. Technol. 21, 129-145. https://doi.org/10.1016/S0925-5214(00)00171-X
  43. Toba, H.H., Howell, J.F., 1991. An improved system for mass-rearing codling moths. J. Entomol. Soc. Br. Columbia 88, 22-27.
  44. Torres, J.A., Velazquez, G., 2005. Commercial opportunities and research challenges in the high pressure processing of foods. J. Food Eng. 67, 95-112. https://doi.org/10.1016/j.jfoodeng.2004.05.066
  45. Usmani, K.A., Shearer, P.W., 2001. Topical pheromone trap assays for monitoring susceptibility of male oriental fruit moth (Lepidoptera:Tortricidae) populations to azinphosmethyl in New Jersey. J. Econ. Entomol. 94, 233-239. https://doi.org/10.1603/0022-0493-94.1.233
  46. Wang, S., Tang, J., Johnson, J.A., Micham, E., Hansen, J.D., 2002. Process protocols based on radio frequency energy to control field and storage pests in inshell walnuts. Postharvest Biol. Technol. 26, 265-273. https://doi.org/10.1016/S0925-5214(02)00048-0
  47. Yin, X., Wang, S., Tang, J., Hansen, J.D., Lurie, S., 2006. Thermal conditioning of fifth-instar Cydia pomonella (Lepidoptera: Tortricidae) affects HSP70 accumulation and insect mortality. Physiol. Entomol. 31, 241-247. https://doi.org/10.1111/j.1365-3032.2006.00512.x

Cited by

  1. Post-harvest Treatment on the Peach Pyralid Moth and the Small Tea Tortrix Moth Infesting Apples Using Controlled Atmosphere and Temperature Treatment System vol.54, pp.1, 2015, https://doi.org/10.5656/KSAE.2015.01.1.066