DOI QR코드

DOI QR Code

Conjugation of Landsat Data for Analysis of the Land Surface Properties in Capital Area

수도권 지표특성 분석을 위한 Landsat 자료의 활용

  • Jee, Joon-Bum (Weather Information Service Engine, Center for Atmospheric and Earthquake Research) ;
  • Choi, Young-Jean (Weather Information Service Engine, Center for Atmospheric and Earthquake Research)
  • 지준범 ((재)기상기술개발원 차세대도시농림융합기상사업단) ;
  • 최영진 ((재)기상기술개발원 차세대도시농림융합기상사업단)
  • Received : 2013.12.07
  • Accepted : 2014.02.12
  • Published : 2014.02.28

Abstract

In order to analyze the land surface properties in Seoul and its surrounding metropolitan area, several indices and land surface temperature were calculated by the Landsat satellites (e.g., Landsat 5, Landsat 7, and Landsat 8). The Landsat data came from only in the fall season with Landsat 5 on October 21, 1985, Landsat 7 on September 29, 2003, and Landsat 8 on September 16, 2013. The land surface properties used are the indices that represented Soil Adjusted Vegetation Index (SAVI), Modified Normalized Difference Wetness Index (MNDWI), Normalized Difference Wetness Index (NDWI), Tasseled cap Brightness, Tasseled cap Greenness, Tasseled cap Wetness Index, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI) and the land surface temperature of the area in and around Seoul. Most indices distinguish very well between urban, rural, mountain, building, river and road. In particular, most of the urbanization is represented in the new city (e.g., Ilsan) around Seoul. According to NDVI, NDBI and land surface temperature, urban expansion is displayed in the surrounding area of Seoul. The land surface temperature and surface elevation have a strong relationship with the distribution and structure of the vegetation/built-up indices such as NDVI and NDBI. While the NDVI is positively correlated with the land surface temperature and is also negatively correlated with the surface elevation, the NDBI have just the opposite correlations, respectively. The NDVI and NDBI index is closely associated with the characteristics of the metropolitan area. Landsat 8 and Landsat 5 have very strong correlations (more than -0.6) but Landsat 7 has a weak one (lower than -0.5).

서울을 포함한 수도권지역의 지표면 특성분석을 위하여 Landsat 위성자료(Landsat 5, Landsat 7, Landsat 8)를 이용하여 다양한 지표 특성지수와 지표면 온도를 계산하였다. 연구에 사용된 Landsat 자료는 가을철 자료로써 1985년 10월 21일의 Landsat 5, 2003년 9월 29일의 Landsat 7 그리고 2013년 9월 1일의 Landsat 8 자료를 이용하였다. 그리고 서울과 주변지역에 대하여 토양조절 식생지수, 수정 정규 습윤지수, 정규 습윤지수, 태슬 모자형 밝기, 태슬 모자형 초록, 태슬 모자형 습윤, 정규 식생지수, 정규 건설지수와 같은 지표 특성지수와 지표면 온도를 산출하였다. 대부분의 지표 특성지수들은 도시, 시골, 산, 건물, 강 그리고 도로 등에서 잘 구별되었다. 특히, 도시화의 특징은 서울 주변의 신도시(예, 일산)에서 잘 나타났다. 정규 식생지수와 정규 건물지수 그리고 지표면 온도에 따르면 도시의 확장은 서울의 주변지역에서 뚜렷이 보였다. 지표면 온도와 지표고도는 식생 또는 건설물의 구조와 분포를 나타내는 정규 식생지수 그리고 정규 건물지수와 강한 상관성이 나타났다. 정규 식생지수는 지표면온도와 양의 상관성을 보였고 지표고도와 음의 상관성을 가지는 반면, 정규 식생지수는 지표면온도와 지표고도에 대하여 각각 반대의 특성을 나타내었다. 또한, Landsat의 정규 식생지수와 정규 건물지수는 수도권지역에서 밀접한 관계를 보였다. Landsat 8과 Landsat 5에서는 -0.6 이하의 강한 상관성이 있었으며 Landsat 7에서는 -0.5 이상의 낮은 상관성이 나타났다.

Keywords

References

  1. Chander, G., Markham, L., and Helder, D.L., 2009, Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113, 893-903. https://doi.org/10.1016/j.rse.2009.01.007
  2. Choi, S.P. and Yang, I.T., 1998, Extraction of land surface change information by using Landsat TM images. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, 21, 261-267. (in Korean)
  3. He, J.F., Liu, J.Y., Zhuang, D.F., Zhang, W., and Liu, M.L., 2007, Assessing the effect of land use/land cover change on the change of urban heat island intensity. Theoretical and Applied Climatology, 90, 217-226. https://doi.org/10.1007/s00704-006-0273-1
  4. Huang, C., Wylie, B., Yang, L., Homer, C., and Zylstra, G., 2002, Derivation of a tasseled cap transformation based on Landsat 7 at-satellite reflectance. International Journal of Remote Sensing, 23, 1741-1748. https://doi.org/10.1080/01431160110106113
  5. Huete, A.R., 1988, A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295-309. https://doi.org/10.1016/0034-4257(88)90106-X
  6. Jeong, J.C., 2009, Comparison of land surface temperatures derived from surface emissivity with urban heat island effect. Journal of Environmental Impact Assessment, 18, 219-277. (in Korean)
  7. Jo, M.H., Lee, K.J., and Kim, W.S., 2001, A study on the spatial distribution characteristic of urban surface temperature using remotely sensed data and GIS. Journal of the Korean Association of Geographic Information Studies, 4, 57-66. (in Korean)
  8. Kang, J.M., Ka M.S., Lee, S.S., and Park, J.K., 2010, Detection of heat change in urban center using Landsat imagery. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, 28, 197- 206. (in Korean)
  9. Karnieli, A., 2010, Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of Climate, 210, 618-633.
  10. Kim, H.D., Im, J.W., and Lee, S.H., 2006, Distribution of relative evapotranspiration availability using Satellite data in Daegu metropolitan. Journal of Korean Earth Science Society, 27, 667-686. (in Korean)
  11. Kim, J.I. and Kwon, J.H., 2005, Identifying urban spatial structure through GIS and Remote Sensing data: The case of Daegu metropolitan area-. The Korean Association of Geographic Information Studies, 8, 21-30. (in Korean)
  12. Kim, T.G., Kim, K.E., Jo K.S., and Kim, K.H., 1996, Monitoring of lake water quality using LANDSAT TM imagery data. Journal of the Korean Society for Geo-Spatial Information System, 4, 23-33. (in Korean)
  13. Landsberg, H.E., 1981, The urban climate. Academic press, New York, USA, 275 p.
  14. Lee, H.R. and Kim, H.M., 2005, A correlation analysis between land surface temperature and NDVI in Kunsan city using Landsat 7 TM/ETM+ satellite images. Journal of the Korean Association of Geographic Information Studies, 8, 31-43. (in Korean)
  15. Lee, J.Y., Ynag D.Y., Kim, J.Y., and Chung, G.S., 2004a, Application of Landsat ETM image indices to classify the wildfire area of Gangneung, Gangweon province, Korea. Journal of Korean Earth Science Society, 25, 754-763. (in Korean)
  16. Lee, J.Y., Yang, D.Y., Kim, J.Y., and Chung, G.S., 2004b, Application of Landsat ETM image to estimate the distribution of soil types and erosional pattern in the wildfire area of Gangneung, Gangweon province, Korea. Journal of Korean Earth Science Society, 25, 764-773. (in Korean)
  17. Lee, K.K. and Hong, W.H., 2008, A study on the urban heat environment pattern analysis and alleviation plan. Journal of Architectural Institute of Korea, 24, 253-260. (in Korean)
  18. Mallick, J., Kant, Y., and Bharath, B.D., 2008, Estimation of land surface temperature over Delhi using Landsat-7 ETM+. Journal Indian Geophysical Union, 12, 131-140.
  19. Na, S.I., Park, J.H., and Shin, H.S., 2008, Change detection of NDVI, surface temperature and VTCI in Saemangeum area using Satellite imagery. Korean National Committee on Irrigation and Drainage Journal, 15, 28-38.
  20. National Aeronautics and Space Administration (NASA), 2004, Landsat 7 science data users handbook. http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Handbook.pdf (February 15th 2014)
  21. Park, M.H., 2001, A Study on the urban heat island phenomenon using LANDSAT TM thermal infrared data: In the case of Seoul. Korean Society Civil Engineering, 21, 861-874. (in Korean)
  22. Prihodko, L. and Goward, S.N., 1997, Estimation of air temperature from remotely sensed surface observations. Remote Sensing of Environment, 60, 335-346. https://doi.org/10.1016/S0034-4257(96)00216-7
  23. Steve, K.J., Wong, N.H., Emlyn, H., Roni, A., and Hong, Y., 2007, The influence of land use on the urban heat island in Singapore. Habitat International, 31, 232-242. https://doi.org/10.1016/j.habitatint.2007.02.006
  24. Suga, Y., Ogawa, H., Ohno, K., and Yamada, K., 2003, Detection of surface temperature from Landsat-7/ETM+. Advances in Space Research, 32, 2235-2240. https://doi.org/10.1016/S0273-1177(03)90548-5
  25. Teillet, P.M., Barker, J.L., Markham, B.L., Irish, R.R., Fedosejevs, G., and Storey, J.C., 2001, Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sensing of Environment, 78, 39-54. https://doi.org/10.1016/S0034-4257(01)00248-6
  26. World Meteorological Organization (WMO), 2007, RGB composite satellite imagery workshop. Final Report, Boulder, CO, 5-7 p.
  27. Yoo, B.M., 1999, Introduction to geospatial information. DongMyung, Seoul, Korea, 511 p. (in Korean)
  28. Yoon, M.H. and Ahn, D.M., 2009, An application of satellite image analysis to visualize the effects of urban green areas on temperature. Journal of the Korean Institute of Landscape Architecture. 37, 46-53. (in Korean)

Cited by

  1. Sensitivity Test of the Numerical Simulation with High Resolution Topography and Landuse over Seoul Metropolitan and Surrounding Areas vol.25, pp.2, 2015, https://doi.org/10.14191/Atmos.2015.25.2.309
  2. Error Analysis of Three Types of Satellite-observed Surface Skin Temperatures in the Sea Ice Region of the Northern Hemisphere vol.36, pp.2, 2015, https://doi.org/10.5467/JKESS.2015.36.2.139
  3. Surface Micro-Climate Analysis Based on Urban Morphological Characteristics: Temperature Deviation Estimation and Evaluation vol.26, pp.3, 2016, https://doi.org/10.14191/Atmos.2016.26.3.445
  4. Comparison of Surface Temperatures between Thermal Infrared Image and Landsat 8 Satellite vol.32, pp.1, 2016, https://doi.org/10.5572/KOSAE.2016.32.1.046
  5. Retrieval of Land SurfaceTemperature based on High Resolution Landsat 8 Satellite Data vol.32, pp.2, 2016, https://doi.org/10.7780/kjrs.2016.32.2.9
  6. Preliminary Study for Tidal Flat Detection in Yeongjong-do according to Tide Level using Landsat Images vol.32, pp.6, 2016, https://doi.org/10.7780/kjrs.2016.32.6.8
  7. Sensitivity Study on High-Resolution Numerical Modeling of Static Topographic Data vol.7, pp.7, 2016, https://doi.org/10.3390/atmos7070086