DOI QR코드

DOI QR Code

Preparation of fluorescent nucleic acids generating unique emission by primer extension reaction using pyrene-labeled deoxyuridine triphosphate derivatives

  • Received : 2014.12.05
  • Accepted : 2014.12.22
  • Published : 2014.12.31

Abstract

Fluorescent nucleic acids were prepared utilizing the polymerase extension (PEX) reaction to incorporate fluorescent molecules. 2'-Deoxyuridine triphosphate (dUTP) derivatives possessing pyrene molecules as fluorophores were synthesized using the aqueous-phase Sonogashira coupling between 5-Iodo-dUTP and acetylene-linked pyrene molecules. The incorporation of the pyrene (Py)-labeled deoxyuridine triphosphates (PyU) into DNA by polymerase was evaluated by polyacrylamide gel electrophoresis, demonstrating that the PyU can work as a good substrate for the PEX reaction. The fluorescent properties of the functionalized DNA prepared by the PEX reaction were characterized by steady-state fluorescence measurements. The Py-conjugated DNA showed typical emission spectra of the pyrene, and the DNA with two pyrene molecules connected to each other by a diethylene glycol linker exhibited a broadened emission attributed to the electronic interaction between the Py molecules.

Keywords

References

  1. Teo, Y. N.; Kool, E. T. Chem. Rev. 2012, 112, 4221-4245. https://doi.org/10.1021/cr100351g
  2. Famulok, M.; Hartig, J. S.; Mayer, G. Chem. Rev. 2007, 107, 3715-3743. https://doi.org/10.1021/cr0306743
  3. Sinkeldam, R. W.; Greco, N. J.; Tor, Y. Chem. Rev. 2010, 110, 2579-2619. https://doi.org/10.1021/cr900301e
  4. Hollenstein, M. Molecules 2012, 17, 13569-13591. https://doi.org/10.3390/molecules171113569
  5. Weisbrod, S. H.; Marx, A. Chem. Commun. 2008, 5675.
  6. Thum, O.; Jager, S.; Famulok, M. Angew. Chem., Int. Ed. 2001, 40, 3990-3993. https://doi.org/10.1002/1521-3773(20011105)40:21<3990::AID-ANIE3990>3.0.CO;2-O
  7. Hocek, M.; Fojta, M. Chem. Soc. Rev. 2011, 40, 5802-5814. https://doi.org/10.1039/c1cs15049a
  8. Augustin, M. A.; Ankenbauer, W.; Angerer, B. J. Biotechnol. 2001, 86, 289-301. https://doi.org/10.1016/S0168-1656(00)00420-X
  9. Riedl, J.; Menova, P.; Pohl, R.; Orsag, P.; Fojta, M.; Hocek, M. J. Org. Chem. 2012, 77, 8287-8293. https://doi.org/10.1021/jo301684b
  10. Riedl, J.; Pohl, R.; Rulisek, L.; Hocek, M. J. Org. Chem. 2012, 77, 1026-1044. https://doi.org/10.1021/jo202321g
  11. Galievsky, V. A.; Malinovskii, V. L.; Stasheuski, A. S.; Samain, F.; Zachariasse, K. A.; Haner, R.; Chirvony, V. S. Photochem. Photobiol. Sci. 2009, 8, 1448. https://doi.org/10.1039/b9pp00016j
  12. Mayer-Enthart, E.; Wagenknecht, H.-A. Angew. Chem., Int. Ed. 2006, 45, 3372-3375. https://doi.org/10.1002/anie.200504210
  13. Smalley, M. K. Nucleic Acids Res. 2006, 34, 152-166. https://doi.org/10.1093/nar/gkj420
  14. Nakamura, M.; Ohtoshi, Y.; Yamana, K. Chem. Commun. 2005, 5163.
  15. Yamana, K.; Iwase, R.; Furutani, S.; Tsuchida, H.; Zako, H.; Yamaoka, T.; Murakami, A. Nucleic Acids Res. 1999, 27, 2387-2392. https://doi.org/10.1093/nar/27.11.2387
  16. Ostergaard, M. E.; Hrdlicka, P. J. Chem. Soc. Rev. 2011, 40, 5771-5788. https://doi.org/10.1039/c1cs15014f
  17. Hocek, M.; Fojta, M. Org. Biomol. Chem. 2008, 6, 2233. https://doi.org/10.1039/b803664k
  18. Brazdilova, P.; Vrabel, M.; Pohl, R.; Pivonkova, H.; Havran, L.; Hocek, M.; Fojta, M. Chem. Eur. J. 2007, 13, 9527-9533. https://doi.org/10.1002/chem.200701249
  19. Ludwig, J.; Eckstein, F. J. Org. Chem. 1989, 54, 631-635. https://doi.org/10.1021/jo00264a024
  20. Jager, S.; Rasched, G.; Kornreich-Leshem, H.; Engeser, M.; Thum, O.; Famulok, M. J. Am. Chem. Soc. 2005, 127, 15071- 15082. https://doi.org/10.1021/ja051725b
  21. Okamoto, A.; Kanatani, K.; Saito, I. J. Am. Chem. Soc. 2004, 126, 4820-4827. https://doi.org/10.1021/ja039625y

Cited by

  1. Influence of the graft density of hydrophobic groups on thermo-responsive nanoparticles for anti-cancer drugs delivery vol.148, 2016, https://doi.org/10.1016/j.colsurfb.2016.08.042