DOI QR코드

DOI QR Code

DNA Length Dependent Photocurrent of Diketopyrrolopyrrole Aggregates Constructed with DNA

  • Nakamura, Mitsunobu (Department of Materials Science and Chemistry, University of Hyogo) ;
  • Tsuto, Koji (Department of Materials Science and Chemistry, University of Hyogo) ;
  • Takada, Tadao (Department of Materials Science and Chemistry, University of Hyogo) ;
  • Yamana, Kazushige (Department of Materials Science and Chemistry, University of Hyogo)
  • Received : 2014.12.10
  • Accepted : 2014.12.22
  • Published : 2014.12.31

Abstract

Bis(2-thienyl)-diketopyrrolopyrrole having two $Zn^{II}$-cylcens (DPPCy) was synthesized. DPP-aggregates were constructed by self-organization of DPPCy and $dT_n$-DNAs. In the presence of L-ascorbic acid as an electron sacrifice reagent, the DPP aggregates immobilized on a gold electrode exhibit good anodic photocurrent responses as well as cathodic photocurrent responses in the presence of methyl viologen. The anodic photocurrent responses depend on the DNA lengths because of the formation of uniform DPP-aggregates corresponding to the DNA lengths. The present results show that photocurrent responses of the DPP-aggregates can be controlled by DNA lengths and electron sacrifice reagents.

Keywords

References

  1. Rothemund, P. W. K. Nature 2006, 440, 297-302. https://doi.org/10.1038/nature04586
  2. Teo, Y. N.; Kool, E. T. Chem. Rev. 2012, 112, 4221-4245. https://doi.org/10.1021/cr100351g
  3. Gonzalez-Rodriguez, D.; Schenning, A. P. H. J. Chem. Mater. 2011, 23, 310-325. https://doi.org/10.1021/cm101817h
  4. Shionoya, M.; Kimura, E.; Shiro, M. J. Am. Chem. Soc. 1993, 115, 6730-6737. https://doi.org/10.1021/ja00068a033
  5. Shiddiky, M. J. A.; Torriero, A. A. J.; Zeng, Z.; Spiccia, L.; Bond, A. M. J. Am. Chem. Soc. 2010, 132, 10053-10063. https://doi.org/10.1021/ja1021365
  6. Maie, K.; Nakamura, M.; Yamana, K. Nucleosides, Nucleotides Nucleic Acids 2006, 25, 453-462. https://doi.org/10.1080/15257770600684142
  7. Tan, X.-Y.; Zhang, J.; Huang, Y.; Zhang, Y.; Zhou, L.-H.; Jiang, N.; Lin, H.-H.; Wang, N.; Xia, C.-Q.; Yu, X.-Q. Chem. Biodiversity 2007, 4, 2190-2197. https://doi.org/10.1002/cbdv.200790176
  8. Aoki, S.; Zulkefeli, M.; Shiro, M.; Kimura, E. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 4894-4899. https://doi.org/10.1073/pnas.072635899
  9. Hendriks, K. H.; Li, W.; Heintges, G. H. L.; van Pruissen, G. W. P.; Wienk, M. M.; Janssen, R. A. J. J. Am. Chem. Soc. 2014, 136, 11128-11133. https://doi.org/10.1021/ja505574a
  10. Subramaniyan, S.; Earmme, T.; Murari, N. M.; Jenekhe, S. A. Polymer Chemistry 2014, 5, 5707-5715. https://doi.org/10.1039/C4PY00566J
  11. Yun, H.-J.; Kang, S.-J.; Xu, Y.; Kim, S. O.; Kim, Y.-H.; Noh, Y.- Y.; Kwon, S.-K. Adv. Mater. 2014, 26, 7300-7307. https://doi.org/10.1002/adma.201403262
  12. Luzio, A.; Fazzi, D.; Natali, D.; Giussani, E.; Baeg, K.-J.; Chen, Z.; Noh, Y.-Y.; Facchetti, A.; Caironi, M. Adv. Funct. Mater. 2014, 24, 1151-1162. https://doi.org/10.1002/adfm.201302297
  13. Nakamura, M.; Okaue, T.; Takada, T.; Yamana, K. Chem. Eur. J. 2012, 18, 196-201. https://doi.org/10.1002/chem.201102216
  14. Tsuto, K.; Nakamura, M.; Takada, T.; Yamana, K. Chem. Asian J. 2014, 9, 1618-1622. https://doi.org/10.1002/asia.201402063
  15. Kirkus, M.; Wang, L.; Mothy, S.; Beljonne, D.; Cornil, J.; Janssen, R. A. J.; Meskers, S. C. J. J. Phys. Chem. A 2012, 116, 7927-7936. https://doi.org/10.1021/jp305097q
  16. Widrig, C. A.; Chung, C.; Porter, M. D. J. Electroanal. Chem. Interfacial Electrochem. 1991, 310, 335-359. https://doi.org/10.1016/0022-0728(91)85271-P
  17. Tamayo, A. B.; Tantiwiwat, M.; Walker, B.; Nguyen, T.-Q. J. Phys. Chem. C 2008, 112, 15543-15552. https://doi.org/10.1021/jp804816c
  18. Trasatti, S. Pure Appl. Chem. 1986, 58, 955-966.
  19. Imahori, H.; Azuma, T.; Ajavakom, A.; Norieda, H.; Yamada, H.; Sakata, Y. J. Phys. Chem. B 1999, 103, 7233-7237. https://doi.org/10.1021/jp990837k
  20. Liu, Y.-F.; Chen, J.-X.; Xu, M.-Q.; Zhao, G.-C. Int. J. Electrochem. Sci. 2014, 9, 4014-4023.