DOI QR코드

DOI QR Code

Family of smart tuned mass dampers with variable frequency under harmonic excitations and ground motions: closed-form evaluation

  • Sun, C. (Department of Civil and Environmental Engineering, Rice University) ;
  • Nagarajaiah, S. (Department of Civil and Environmental Engineering, Rice University) ;
  • Dick, A.J. (Department of Mechanical Engineering and Materials Science, Rice University)
  • Received : 2013.12.19
  • Accepted : 2014.01.09
  • Published : 2014.02.25

Abstract

A family of smart tuned mass dampers (STMDs) with variable frequency and damping properties is analyzed under harmonic excitations and ground motions. Two types of STMDs are studied: one is realized by a semi-active independently variable stiffness (SAIVS) device and the other is realized by a pendulum with an adjustable length. Based on the feedback signal, the angle of the SAIVS device or the length of the pendulum is adjusted by using a servomotor such that the frequency of the STMD matches the dominant excitation frequency in real-time. Closed-form solutions are derived for the two types of STMDs under harmonic excitations and ground motions. Results indicate that a small damping ratio (zero damping is the best theoretically) and an appropriate mass ratio can produce significant reduction when compared to the case with no tuned mass damper. Experiments are conducted to verify the theoretical result of the smart pendulum TMD (SPTMD). Frequency tuning of the SPTMD is implemented through tracking and analyzing the signal of the excitation using a short time Fourier transformation (STFT) based control algorithm. It is found that the theoretical model can predict the structural responses well. Both the SAIVS STMD and the SPTMD can significantly attenuate the structural responses and outperform the conventional passive TMDs.

Keywords

References

  1. Abe, M. (1996), "Semi-active tuned mass dampers for seismic protection of civil structures", Earthq. Eng. Struct. D., 25(7), 743-749. https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<743::AID-EQE579>3.0.CO;2-S
  2. Abe, M and Igusa, T. (1996), "Semi-active dynamics vibration absorbers for controlling transient response", J. Sound Vib., 198(5), 547-569. https://doi.org/10.1006/jsvi.1996.0588
  3. Chopra Anil K.(2006), Dynamics of structures: (3rd Ed.), Prentice Hall.
  4. Den Hartog, J.P. (1956), Mechanical vibrations (4th Ed.), McGraw-Hill, New York.
  5. Eason, R.P., Sun, C., Nagarajaiah, S. and Dick, A.J. (2013), "Attenuation of a linear oscillator using a nonlinear and a semi-active tuned mass damper in series", J. Sound Vib., 332(1), 154-166. https://doi.org/10.1016/j.jsv.2012.07.048
  6. Frahm, H. (1911), Device for damping vibration of bodies, US Patent (989,985).
  7. Gerges, R.R. and Vickery, B.J. (2005), "Pendulum tuned mass dampers for floor vibration control", Struct Des. Tall Spec., 14(4), 353-368. https://doi.org/10.1002/tal.273
  8. Housner, G.W., Bergman L.A., Caughey T.K., Chassiakos A.G. and Claus R.O., Masri, S., Skelton, R., Soong, T., Spencer, B., and Yao, J. (1997), "Structural control: past, present, and future", J. Eng. Mech. - ASCE, 123(9), 691-705.
  9. Hrovat, D., Barak, P. and Rabins, M. (1983), "Semi-active versus passive or active tuned mass dampers for structural control", J. Eng. Mech. - ASCE, 109(3), 897-971.
  10. Kobori T., Takahashi M., Nasu T. and Niwa N. (1993), "Seismic response controlled structure with active variable stiffness system", Earthq. Eng. Struct. D., 22(11), 925-941. https://doi.org/10.1002/eqe.4290221102
  11. Nagarajaiah, S. and Mate, D. (1998), "Semi-active control of continuously variable stiffness system", Proceedings of the 2nd World Conference on Structural Control , Kyoto, Japan.
  12. Nagarajaiah, S. (2000), Structural vibration damper with continuously variable stiffness, US Patent No. (6098969).
  13. Nagarajaiah, S. and Varadarajan, N. (2005), "Short time Fourier transform algorithm for wind response control of buildings with variable stiffness TMD", J. Eng. Struct., 27(3), 431-441. https://doi.org/10.1016/j.engstruct.2004.10.015
  14. Nagarajaiah, S. and Sonmez, E. (2007), "Structures with semiactive variable stiffness single/multiple tuned mass dampers", J. Struct. Eng., 133(1), 67-77. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:1(67)
  15. Nagarajaiah, S. (2009), "Adaptive passive, semi-active, smart tuned mass dampers: identification and control using empirical mode decomposition, Hilbert transform, and short-term Fourier transform", Struct. Control Health Monit., 16(7-8), 800-841. https://doi.org/10.1002/stc.349
  16. Newmark, N.M. and Hall, W.J. (1982), Earthquake spectra and design, Earthquake Engineering Research Institute, Berkeley, Calif.
  17. Ormondroyd, J. and Den Hartog, J.P. (1928), "The theory of the dynamic vibration absorber", T. Am. Soc. Mech. Eng , 50, 9-22.
  18. Spencer, B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng. - ASCE 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
  19. Sun, C., Eason, R.P., Nagarajaiah, S. and Dick, A.J. (2013), "Hardening Duffing oscillator attenuation using a nonlinear TMD, a semi-active TMD and a multiple TMD", J. Sound Vib., 332(4), 674-686. https://doi.org/10.1016/j.jsv.2012.10.016
  20. Sun, C. and Nagarajaiah, S. (2013), "Study on semi-active tuned mass damper with variable damping and stiffness under seismic excitations", Struct. Control Health Monit., DOI:10.1002/stc.1620.
  21. Sun, C., Nagarajaiah, S. and Dick, A.J. (2013), "Experimental investigation of vibration attenuation using nonlinear tuned mass damper and pendulum tuned mass damper in parallel", Nonlinear Dynam. (under review).
  22. Varadarajan, N. and Nagarajaiah, S. (2004), "Wind response control of building with variable stiffness tuned mass damper using EMD/HT", J. Eng. Mech., 130(4), 451-458. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(451)
  23. Yamada K. and Kobori T. (1995), "Control algorithm for estimating future responses of active variable stiffness structure", Earthq. Eng. Struct. D., 24(8),1085-1099. https://doi.org/10.1002/eqe.4290240804
  24. Yamada K., Ritchey J.K., Baxter A.J. and Murray T.M. (2006), "Pendulum tuned mass dampers for floor vibration control", J. Perform. Constr. Fac., 24(1), 64-73.

Cited by

  1. Study on Adaptive-Passive and Semi-Active Eddy Current Tuned Mass Damper with Variable Damping vol.10, pp.1, 2018, https://doi.org/10.3390/su10010099
  2. Study on self-adjustable tuned mass damper with variable mass 2018, https://doi.org/10.1002/stc.2114
  3. Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics vol.15, pp.3, 2015, https://doi.org/10.12989/sss.2015.15.3.627
  4. Bi-directional vibration control of offshore wind turbines using a 3D pendulum tuned mass damper vol.105, 2018, https://doi.org/10.1016/j.ymssp.2017.12.011
  5. Optimum seismic design of a power plant building with pendulum tuned mass damper system by its heavy suspended buckets vol.136, 2017, https://doi.org/10.1016/j.engstruct.2017.01.010
  6. Distributed Tuned Mass Dampers for Multi-Mode Control of Benchmark Building under Seismic Excitations 2017, https://doi.org/10.1080/13632469.2017.1351407
  7. Steady-state response attenuation of a linear oscillator–nonlinear absorber system by using an adjustable-length pendulum in series: Numerical and experimental results vol.344, 2015, https://doi.org/10.1016/j.jsv.2015.01.030
  8. Closed-form optimum tuning formulas for passive Tuned Mass Dampers under benchmark excitations vol.17, pp.2, 2016, https://doi.org/10.12989/sss.2016.17.2.231
  9. Experimental investigation of vibration attenuation using nonlinear tuned mass damper and pendulum tuned mass damper in parallel vol.78, pp.4, 2014, https://doi.org/10.1007/s11071-014-1619-3
  10. Experimental investigation on a passive auto-tuning mass damper for vibration control 2017, https://doi.org/10.1007/s40435-017-0381-z
  11. Application of an Artificial Fish Swarm Algorithm in an Optimum Tuned Mass Damper Design for a Pedestrian Bridge vol.8, pp.2, 2018, https://doi.org/10.3390/app8020175
  12. Performance of TMDs on nonlinear structures subjected to near-fault earthquakes vol.16, pp.4, 2015, https://doi.org/10.12989/sss.2015.16.4.725
  13. Residual mode correction in calibrating nonlinear damper for vibration control of flexible structures vol.406, 2017, https://doi.org/10.1016/j.jsv.2017.06.015
  14. Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method vol.51, pp.4, 2014, https://doi.org/10.12989/sem.2014.51.4.547
  15. A study on semi-active Tuned Liquid Column Dampers (sTLCDs) for structural response reduction under random excitations vol.362, 2016, https://doi.org/10.1016/j.jsv.2015.09.020
  16. Study on an improved variable stiffness tuned mass damper based on conical magnetorheological elastomer isolators vol.26, pp.10, 2017, https://doi.org/10.1088/1361-665X/aa81e8
  17. Along-wind response control of chimneys with distributed multiple tuned mass dampers pp.15452255, 2019, https://doi.org/10.1002/stc.2275
  18. Optimum Tuning of Passive Tuned Mass Dampers for the Mitigation of Pulse-Like Responses vol.140, pp.6, 2018, https://doi.org/10.1115/1.4040475
  19. Analog active valve control design for non-linear semi-active resetable devices vol.19, pp.5, 2014, https://doi.org/10.12989/sss.2017.19.5.487
  20. Self-control of high rise building L-shape in plan considering soil structure interaction vol.6, pp.3, 2014, https://doi.org/10.12989/csm.2017.6.3.229
  21. Energy harvesting techniques for health monitoring and indicators for control of a damaged pipe structure vol.21, pp.3, 2018, https://doi.org/10.12989/sss.2018.21.3.287
  22. Optimal Design and Application of a Multiple Tuned Mass Damper System for an In-Service Footbridge vol.11, pp.10, 2014, https://doi.org/10.3390/su11102801
  23. Study on magnetorheological damper stiffness shift vol.25, pp.3, 2014, https://doi.org/10.12989/sss.2020.25.3.279
  24. Wind-induced vibration control of a constructing bridge tower with MRE variable stiffness tuned mass damper vol.29, pp.4, 2014, https://doi.org/10.1088/1361-665x/ab785a
  25. Enhanced motion control performance of the tuned mass damper inerter through primary structure shaping vol.28, pp.8, 2021, https://doi.org/10.1002/stc.2756
  26. Study on a 3D pounding pendulum TMD for mitigating bi-directional vibration of offshore wind turbines vol.241, pp.None, 2021, https://doi.org/10.1016/j.engstruct.2021.112383