References
- Abe, M and Fujino, Y. (1994), "Dynamic characterization of multiple tuned mass dampers and some design formulas", Earthq. Eng. Struct. D., 23, 813-835. https://doi.org/10.1002/eqe.4290230802
- American Institute of Steel Construction (AISC) (1989), Manual of steel construction-allowable stress design, 9th Ed., Chicago, IL.
- Baker, G. (1996), "Exact deflections in nonprismatic members", Comput. Struct., 61(3), 515-528. https://doi.org/10.1016/0045-7949(96)00046-6
- Chang, J.C.H. and Soong, T.T. (1980), "Structural control using active tuned mass dampers", J. Eng. Mech. - ASCE, 6(106), 1091-1098.
- Choi, C.K. and Kim, S.H. (1989), "Coupled use of reduced integration and nonconforming modes in improving quadratic plate element", Int. J. Numer. Meth. Eng., 28(4), 1909-1928. https://doi.org/10.1002/nme.1620280814
- Choi, C.K. and Kwak, H.G. (1989), "Optimum RC member design with discrete sections", Proceedings of the '89 ASCE Structures Congress, San Francisco, May.
- Chu, S.Y., Soong, T.T. and Reinhorn, A.M. (2005), Active, hybrid, semi-active structural control-a design and implementation handbook, Wiley, New York.
- Cohen, L. (1995), Time-frequency analysis (1st Ed.), Prentice-Hall, New Jersey.
- Contreras, M., Pasala, D.T.R. and Nagarajaiah, S. (2012) "Adaptive length SMA pendulum smart tuned mass damper performance in the presence of real time primary system stiffness change", Smart Struct. Syst. (accepted).
- Dyck, J., Nagarajaiah, S. and Taylor, D. (2006) "Variation of supplemental stiffness and damping using adjustable fluid spring and damper", Proceedings of the 8th U.S. National Conference on Earthquake Engineering, EERI, CDROM.
- Hrovat, D., Barak, P. and Rabins, M. (1982), "Semiactive versus passive or active tuned mass dampers for structural control", J. Eng. Mech. - ASCE, 3(109), 691-705.
- Ikeda, Y., Sasaki, K., Sakamoto, M. and Kobori, T. (2001) "Active mass driver system as the first application of active structural control", Earthq. Eng. Struct. D., 30(11), 1575-1595. https://doi.org/10.1002/eqe.82
- Jangid, R.S. (1999), "Optimal multiple tuned mass dampers for base-excited undamped system", Earthq. Eng. Struct. D., 28(9), 1041-1049. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<1041::AID-EQE853>3.0.CO;2-E
- Kareem, A. and Kline, S. (1993), "Performance of multiple mass dampers under random loading", J. Struct. Eng. - ASCE, 2(121), 348-361.
- Kobori, T., Takahashi, M., Nasu, T., Niwa, N. and Ogasawara, K. (1993), "Seismic response controlled structure with active variable stiffness system", Earthq. Eng. Struct. D., 22(11), 925-941. https://doi.org/10.1002/eqe.4290221102
- Kurata, N., Kobori, T., Takahashi, M., Niw, N. and Midorikawa, H. (1999), "Actual seismic response controlled building with semiactive damper system", Earthq. Eng. Struct. D., 28, 1427-1447. https://doi.org/10.1002/(SICI)1096-9845(199911)28:11<1427::AID-EQE876>3.0.CO;2-#
- LRFD-AISC, Manual of Steel Construction, Load and Resistance Factor Design (1999), Metric conversion of the 2nd Ed., Vol. 1, 2. AISC, Chicago.
- Nagarajaiah, S. and Mate, D. (1998), "Semi-active control of continuously variable stiffness system", Proceedings of the 2nd World Conference on Structural Control, Kyoto, Japan.
- Nagarajaiah, S., Vardarajan, N. and Sahasrabudhe, S. (1999), "Variable stiffness and instantaneous frequency", Proceedings of the Structures Congress, ASCE, 1, 858-861.
- Nagarajaiah, S. (2000), Structural vibration damper with continuously variable stiffness, US Patent No. 6098969.
- Nagarajaiah, S. and Varadarajan, N. (2005), "Semi-active control of wind excited building with variable stiffness TMD using short-time Fourier transform", Eng. Struct., 27, 431-441. https://doi.org/10.1016/j.engstruct.2004.10.015
- Nagarajaiah, S. and Sahasrabudhe, S. (2006), "Seismic response control of smart sliding isolated buildings using variable stiffness systems: experimental and numerical study", Earthq. Eng. Struct. D., 35(2), 177-197. https://doi.org/10.1002/eqe.514
- Nagarajaiah, S. and Sonmez, E. (2007), "Structures of semi-active variable stiffness multiple tuned mass dampers under harmonic forces", J. Struct. Eng. - ASCE, 133(1), 67-77. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:1(67)
- Nagarajaiah, S. (2009), "Adaptive passive, semiactive, smart tuned mass dampers: identification and control using empirical mode decomposition, Hilbert transform, and short-term Fourier transform", Struct. Health Monit. Control, 16 (7-8), 800-841. https://doi.org/10.1002/stc.349
- Nagarajaiah, S., Pasala, D.T.R., Huang, C. (2010), "Smart TMD: Adaptive length pendulum dampers", Proceedings of the 5th world conference on structural control and health monitoring, Tokyo, Japan, CDROM.
- Nagarajaiah, S., Reinhorn, A.M., Constantinou, M.C., Taylor, D., Pasala, D.T.R. and Sarlis, A.A.S. (2010), "Adaptive negative stiffness: A new structural modification approach for seismic protection", Proceedings of the 5th World Conference on Structural Control and Monitoring, Tokyo, Japan, CDROM.
- Nagarajaiah, S. and Pasala, D.T.R. "NEESR-adapt-struct: semi-active control of ASD device -adaptive length pendulum dampers", Proceedings of the 19th Analysis and computation specialty conference, ASCE, CDROM.
- Narasimhan, S. and Nagarajaiah, S. (2005), "STFT algorithm for semiactive control of base isolated buildings with variable stiffness isolation systems subjected to near fault earthquakes", Eng. Struct., 27, 514-523. https://doi.org/10.1016/j.engstruct.2004.11.010
- Ormondroyd, J. and Den Hartog, J.P. (1928), "The theory of the dynamic vibration absorber", Transactions ASME, APM-50-7, 9-22.
- Pasala, D.T.R, Nagarajaiah, S., Grigoriadis, K.M. (2012), "Tracking control of variable stiffness hysteretic-systems using linear-parameter-varying gain-scheduled controller", Smart Struct. Syst., 9(4), 373-392. https://doi.org/10.12989/sss.2012.9.4.373
- Saka, M.P. and Hasancebi, O. (2009), "Design code optimization of steel structures using adaptive harmony search algorithm", Stud. Comput. Intel., 239, 79-120. https://doi.org/10.1007/978-3-642-03450-3_3
- Salvadori, M.G. and Baron, M.L. (1961), Numerical methods in engineering, Prentice-Hall, Englewood Cliffs, NJ.
- Smith, S. (1998), "The simplex method and evolutionary algorithms", Proceedings of the IEEE International Conference on Evolutionary Computation, 799-804.
- Spencer, B.F. and Nagarajaiah, S. (2003) "State of the art of structural control", J. Struct. Eng. - ASCE, 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
- Sun, J.Q., Jolly, M.R. and Norris, M.A. (1995), "Passive, adaptive, and active tuned vibration absorbers: a survey", J. Mech. Design, 111, 234-242.
- Varadarajan, N. and Nagarajaiah, S. (2004), "Wind response control of building with variable stiffness tuned mass damper using EMD/HT", J. Eng. Mech. - ASCE, 130 (4), 451-458. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(451)
- Yalla, S.K., Kareem, A. and Cantor, J.C. (2001), "Semi-active tuned liquid dampers for vibration control of structures", Eng. Struct., 23(11), 1469-1479. https://doi.org/10.1016/S0141-0296(01)00047-5
- Yamada, K. and Kobori, T. (1995) "Control algorithm for estimating future responses of active variable stiffness structure", Earthq. Eng. Struct. D., 24(8), 1085-1099. https://doi.org/10.1002/eqe.4290240804
- Yang, J.N., Bobrow, J., Jabbari, F., Leavitt, J., Cheng, C.P. and Lin, P.Y. (2007), "Full-scale experimental verification of resetable semiactive stiffness dampers", Earthq. Eng. Struct. D., 36 (9), 1255-1273. https://doi.org/10.1002/eqe.681
Cited by
- Suspension-type tuned mass dampers with varying pendulum length to dissipate energy vol.23, pp.10, 2016, https://doi.org/10.1002/stc.1834
- Seismic control response of structures using an ATMD with fuzzy logic controller and PSO method vol.51, pp.4, 2014, https://doi.org/10.12989/sem.2014.51.4.547
- Toward an adaptive vibration absorber using shape-memory alloys, for civil engineering applications 2017, https://doi.org/10.1177/1045389X17721031
- Steady-state response attenuation of a linear oscillator–nonlinear absorber system by using an adjustable-length pendulum in series: Numerical and experimental results vol.344, 2015, https://doi.org/10.1016/j.jsv.2015.01.030
- Smart tuned mass dampers: recent developments vol.13, pp.2, 2014, https://doi.org/10.12989/sss.2014.13.2.173
- Study on self-adjustable variable pendulum tuned mass damper pp.15417794, 2018, https://doi.org/10.1002/tal.1561
- Semi-active phase control of tuned mass dampers for translational and torsional vibration mitigation of structures vol.25, pp.9, 2018, https://doi.org/10.1002/stc.2191
- Control performance of suspended mass pendulum with the consideration of out-of-plane vibrations vol.25, pp.9, 2018, https://doi.org/10.1002/stc.2217
- Experimental verification of leverage-type stiffness-controllable tuned mass damper using direct output feedback LQR control with time-delay compensation vol.12, pp.4, 2014, https://doi.org/10.12989/eas.2017.12.4.425
- Energy harvesting techniques for health monitoring and indicators for control of a damaged pipe structure vol.21, pp.3, 2018, https://doi.org/10.12989/sss.2018.21.3.287
- Modified pendular vibration absorber for structures under base excitation vol.66, pp.2, 2014, https://doi.org/10.12989/sem.2018.66.2.161
- Semi-active eddy current pendulum tuned mass damper with variable frequency and damping vol.25, pp.1, 2014, https://doi.org/10.12989/sss.2020.25.1.065
- Structural Vibration Control of the Spatial Suspended Mass Pendulum vol.455, pp.None, 2020, https://doi.org/10.1088/1755-1315/455/1/012001
- Vibration reduction by stiffness modulation – A theoretical study vol.501, pp.None, 2021, https://doi.org/10.1016/j.jsv.2021.116040
- A Passive Adaptive Suspended Mass Pendulum to Compensate Detuning Due to Large Swing Angle vol.21, pp.9, 2014, https://doi.org/10.1142/s0219455421501236
- Multifunctional properties of shape memory materials in civil engineering applications: A state-of-the-art review vol.44, pp.None, 2014, https://doi.org/10.1016/j.jobe.2021.102657