DOI QR코드

DOI QR Code

Numerical analysis of interface crack problem in composite plates jointed with composite patch

  • Cetisli, Fatih (Department of Civil Engineering, Pamukkale University) ;
  • Kaman, Mete O. (Department of Mechanical Engineering, Firat University)
  • Received : 2012.07.05
  • Accepted : 2013.10.24
  • Published : 2014.02.25

Abstract

Stress intensity factors are numerically investigated for interfacial edge crack between two dissimilar composite plates jointed with single side composite patch. Variation of stress intensity factor under Mode I loading condition is examined for different material models and fiber orientation angles of composite plates and patch. ANSYS 12.1 finite element analysis software is used to obtain displacements of crack surfaces in the numerical solution and repaired plates are modeled in three dimensions. Obtained results are presented in the form of graphs. It is found that fiber orientation angle of composites is an effective parameter on interfacial stress intensity factor.

Keywords

References

  1. Abdelaziz, A.T., Boukhili, R., Achiou, S., Gordon, S. and Boukheli, H. (2006), "Bonded joints with composite adherents. Part I. effect of specimen configuration, adhesive thickness, spew filet and adherent stiffness on fracture", Int. J. Adhes. Adhes., 26, 226-236. https://doi.org/10.1016/j.ijadhadh.2005.03.015
  2. Albedah, A., Bouiadjra, B.B., Mhamdia, R., Benyahia, F. and Es-Saheb, M. (2011), "Comparison between double and single sided bonded composite repair with circular shape", Mater. Des., 32(2), 996-1000. https://doi.org/10.1016/j.matdes.2010.08.022
  3. ANSYS (2009), Academic Teaching Introductory Help Menu.
  4. Apalak, Z.G. (2006), "Progressive damage modeling of an adhesively bonded unidirectional composite single - lap joint in tension at the meso scale level", J. Thermoplast Compos. Mater., 19(6), 671-702. https://doi.org/10.1177/0892705706067487
  5. Atas, C., Akgun, Y., Dagdelen, O., Icten, B.M. and Sarikanat, M. (2011), "An experimental investigation on the low velocity impact response of composite plates repaired by VARIM and hand lay-up processes", Compos. Struct., 93(3), 1178-1186. https://doi.org/10.1016/j.compstruct.2010.10.002
  6. Ayatollahi, M.R. and Hashemi, R. (2007), "Mixed mode fracture in an inclined center crack repaired by composite patching", Compos. Struct., 81, 264-273 https://doi.org/10.1016/j.compstruct.2006.08.013
  7. Barnett, D.M. and Lothe, J. (1973), "Synthesis of the sextic and the integral formalism for dislocations, greens function and surface waves in anisotropic elastic solids", Physica Norvegica, 7, 13-9.
  8. Belhouari, M., Bouiadjra, B.B., Megueni, A. and Kaddouri, K. (2004), "Comparison of double and single bonded repairs to symmetric composite structures: A numerical analysis", Compos. Struct., 65(1), 47-53. https://doi.org/10.1016/j.compstruct.2003.10.005
  9. Bezzerrouki, M., Bouiadjra, B.B. and Ouinas, D. (2008), "SIF for cracks repaired with single composite patch having two adhesive bands and double symmetric one in aircraft structures", Int. J. Comput. Mater. Sci. Surf. Eng., 44(2), 542-546. https://doi.org/10.1016/j.commatsci.2008.04.029
  10. Bouiadjra, B.B., Fekirini, H., Serier, B. and Benguediab, M. (2007), "Numerical analysis of the beneficial effect of the double symmetric patch repair compared to single one in aircraft structures", Int. J. Comput. Mater. Sci. Surf. Eng., 38(4), 824-829. https://doi.org/10.1016/j.commatsci.2006.05.020
  11. Dongye, C. and Ting, T.C.T. (1989), "Explicit expressions of Barnett Lothe tensors and their associated tensors for orthotropic materials", Q. Appl. Math., 47, 732-734.
  12. Gu, L., Kasavajhala, A.R.M. and Zhao, S. (2011), "Finite element analysis of cracks in aging aircraft structures with bonded composite-patch repairs", Composites Part B, 42(3), 505-510. https://doi.org/10.1016/j.compositesb.2010.11.014
  13. Hemanth, D., Aradhya, S.K.S., Murthy, R.T.S. and Raju, N.G. (2005), "Strain energy release rates for an interface crack in orthotropic media-a finite element investigation", Eng. Fract. Mech., 72(5), 759-772. https://doi.org/10.1016/j.engfracmech.2004.06.002
  14. Her, S.C. (1999), "Stress analysis of adhesively bonded-lap joints", Compos. Struct., 47(1-4), 673-678. https://doi.org/10.1016/S0263-8223(00)00052-0
  15. Hwu, C. (1993), "Explicit solutions for collinear interface crack problems", Int. J. Solids Struct., 30(3), 301-312. https://doi.org/10.1016/0020-7683(93)90167-6
  16. Ikeda, T., Nagai, M., Yamanaga, K. and Miyazaki, N. (2006), "Stress intensity factor analyses of interface cracks between dissimilar anisotropic materials using the finite element method", Eng. Fract. Mech., 73(14), 2067-2079. https://doi.org/10.1016/j.engfracmech.2006.01.040
  17. Jones, R. and Chiu, W.K. (1999), "Composite repairs to cracks in thick metallic components", Compos. Struct., 44(1), 17-29. https://doi.org/10.1016/S0263-8223(98)00108-1
  18. Liou, J.Y. and Sung, J.C. (2008), "On the Barnett-Lothe tensors for anisotropic elastic materials", Eur. J. Mech. A Solids, 27 (6), 1140-1160. https://doi.org/10.1016/j.euromechsol.2007.11.013
  19. Madani, K., Touzain, S., Feaugas, X., Benguediab, M. and Ratwani, M. (2008), "Numerical analysis for the determination of the stress intensity factors and crack opening displacements in plates repaired with single and double composite patches", Int. J. Comput. Mater. Sci. Surf. Eng., 42(3), 385-393. https://doi.org/10.1016/j.commatsci.2007.08.010
  20. Madenci, E. and Guven, I. (2006), The Finite Element Method and Applications in Engineering Using ANSYS, Springer, New York
  21. Nagai, M., Ikeda, T. and Miyazaki, N. (2007a), "Stress intensity factor analysis of an interface crack between dissimilar anisotropic materials under thermal stress using the finite element analysis", Int. J. Fract., 146(4), 233-248. https://doi.org/10.1007/s10704-007-9163-5
  22. Nagai, M., Ikeda, T. and Miyazaki, N. (2007b), "Stress intensity factor analysis of a three-dimensional interface crack between dissimilar anisotropic materials", Eng. Fract. Mech., 74(16), 2481-2497. https://doi.org/10.1016/j.engfracmech.2006.12.027
  23. Okafor, A.C. and Bhogapurapu, H. (2006), "Design and analysis of adhesively bonded thick composite patch repair of corrosion grind-out and cracks on 2024 T3 clad aluminum aging aircraft structures", Compos. Struct., 76(1-2), 138-150. https://doi.org/10.1016/j.compstruct.2006.06.020
  24. Oudad, W., Bouiadjra, B.B., Belhouari, M., Touzain, S. and Feaugas, X. (2009), "Analysis of the plastic zone size ahead of repaired cracks with bonded composite patch of metallic aircraft structures", Int. J. Comput. Mater. Sci. Surf. Eng., 46(4), 950-954. https://doi.org/10.1016/j.commatsci.2009.04.041
  25. Qian, W. and Sun, C.T. (1998), "Methods for calculating stress intensity factors for interfacial cracks between two orthotropic solids", Int. J. Solids Struct., 35(25), 3317-3330. https://doi.org/10.1016/S0020-7683(97)00181-9
  26. Rogel, L. and Sills, L.B. (2010), "A through interface crack between a transversely isotropic pair of materials (+$30^{\circ}$/-$60^{\circ}$, -$30^{\circ}$/+$60^{\circ}$)", Eng. Fract. Mech., 77(16), 3261-3291. https://doi.org/10.1016/j.engfracmech.2010.08.014
  27. Schubbe, J.J. and Mall, S. (1999), "Investigation of a cracked thick aluminum panel repaired with a bonded composite patch", Eng. Fract. Mech., 63(3), 305-323. https://doi.org/10.1016/S0013-7944(99)00032-6
  28. Seo, D.C. and Lee, J.J. (2002), "Fatigue crack growth behavior of cracked aluminum plate repaired with composite patch", Compos. Struct., 57(1-4), 323-330. https://doi.org/10.1016/S0263-8223(02)00095-8
  29. Sheppard, A., Kelly, D. and Tong, L. (1998), "A damage zone model for the failure analysis of adhesively bonded joints", Int. J. Adhes. Adhes., 18(6), 385-400. https://doi.org/10.1016/S0143-7496(98)00024-4
  30. Sills, L.B., Hershkovitz, I., Wawrzynek, P.A., Eliasi, R. and Ingraffea, A.R. (2005), "Methods for calculating stress intensity factors in anisotropic materials: part I-z = 0 is a symmetric plane", Eng. Fract. Mech., 72(15), 2328-2358. https://doi.org/10.1016/j.engfracmech.2004.12.007
  31. Sills, L.B. and Ikeda, T. (2011), "Stress intensity factors for interface cracks between orthotropic and monoclinic material", Int. J. Fract., 167(1), 47-56. https://doi.org/10.1007/s10704-010-9518-1
  32. Stroh, A.N. (1962), "Steady state problems in anisotropic elasticity", J. Math. Phys., 41(2), 77-103. https://doi.org/10.1002/sapm196241177
  33. Sun, C.T. and Qian, W. (1997), "The use of finite extension strain energy release rates in fracture of interfacial cracks", Int. J. Solids Struct., 34(20), 2595-2609. https://doi.org/10.1016/S0020-7683(96)00157-6
  34. Temiz, S. (2006), "Application of bi-adhesive in double-strap joints subjected to bending moment", J. Adhes. Sci. Technol., 20(14), 1547-1560. https://doi.org/10.1163/156856106778884262
  35. Ting, T.C.T. (1986), "Explicit solution and invariance of the singularities at an interface crack in anisotropic composites", Int. J. Solids Struct., 22(9), 965-983. https://doi.org/10.1016/0020-7683(86)90031-4
  36. Toudeshkya, H.H., Ghaffaria, M.A. and Mohammadib, B. (2011), "Fatigue propagation of induced cracks by stiffeners in repaired panels with composite patches", Pro. Eng., 10, 3285-3290. https://doi.org/10.1016/j.proeng.2011.04.542
  37. Turaga, V.R.S. and Ripudaman, S. (1999), "Modeling of patch repairs to a thin cracked sheet", Eng. Fract. Mech., 62(2-3), 267-289. https://doi.org/10.1016/S0013-7944(98)00088-5
  38. Zhang, Y., Vassilopoulos, A.P. and Keller, T. (2010), "Effects of low and high temperatures on tensile behavior of adhesively-bonded GFRP joints", Compos. Struct., 92(7), 1631-1639. https://doi.org/10.1016/j.compstruct.2009.11.028

Cited by

  1. A new formulation of the J integral of bonded composite repair in aircraft structures vol.58, pp.5, 2016, https://doi.org/10.12989/sem.2016.58.5.745
  2. XFEM for Fracture Analysis in 2D Anisotropic Elasticity vol.9, pp.01, 2017, https://doi.org/10.4208/aamm.2015.m1143
  3. Elastic-plastic analysis of the J integral for repaired cracks in plates vol.4, pp.2, 2015, https://doi.org/10.12989/amr.2015.4.2.087
  4. Developing brittle transparent materials with 3D fractures and experimental study vol.22, pp.2, 2016, https://doi.org/10.12989/scs.2016.22.2.399
  5. Probabilistic elastic-plastic analysis of repaired cracks with bonded composite patch vol.20, pp.6, 2016, https://doi.org/10.12989/scs.2016.20.6.1173
  6. Effect of the corrosion of plate with double cracks in bonded composite repair vol.64, pp.3, 2017, https://doi.org/10.12989/sem.2017.64.3.323
  7. Analysis of various composite patches effect on mechanical properties of notched Al-Mg plate vol.25, pp.6, 2014, https://doi.org/10.12989/scs.2017.25.6.685