DOI QR코드

DOI QR Code

A Study on the Performance of Catalysts for the Recombination of Oxyhydrogen Gas Generated in Secondary Battery

이차전지내 발생하는 수소-산소 혼합기체 재결합용 촉매의 성능 측정 및 이론적 모델 연구

  • Kim, Yong-Sik (Department of Chemical engineering, Hong Ik University) ;
  • Chang, Min-Hwan (Department of Chemical engineering, Hong Ik University) ;
  • Ju, Jeh-Beck (Department of Chemical engineering, Hong Ik University)
  • 김용식 (홍익대학교 공과대학 화학공학과) ;
  • 장민환 (홍익대학교 공과대학 화학공학과) ;
  • 주재백 (홍익대학교 공과대학 화학공학과)
  • Received : 2014.01.22
  • Accepted : 2014.02.24
  • Published : 2014.02.28

Abstract

The performance of catalysts for the recombination of oxyhydrogen gas was measured and compared with the results obtained from theoretical model. The oxyhydrogen gas was generated by the electrolysis cell and recombined through the fixed bed catalytic reactor. The yield that is the ratio of water-amount produced to the water-amount consumed in the electrolysis cell was increased with the increase of KOH concentration in electrolysis cell and the applied current. The catalyst 1 showed the best performance and the yield was under 60 %. The faradic yield calculated by Faraday's law showed about 100% in maximum with catalyst 1. The production rate of water generated by the recombination was 5-40 g/day dependent on the flow rate of mixed gas. Considering the results calculated from the pseudo-homogeneous catalytic reactor model, the hot point inside the reactor was moved to the direction of outlet and the maximum temperatures were $440-480^{\circ}K$ when the gas flow rate increased. The production rate of water calculated from the theoretical model showed good agreement with experimental results below the flow rate of $0.5cm^3/sec$, but there were much differences above that flow rate.

이차전지에서 충전이나 방전시 발생하는 수소-산소 혼합기체의 재결합반응용 촉매들의 성능을 측정하고 모델식을 정립 및 해석하여 실험값과 비교하였다. 전기분해셀을 이용하여 수소-산소 혼합기체를 발생시켰으며 고정층 촉매 반응기를 사용하여 촉매의 성능을 측정하였다. 생성된 물의 양과 전기 분해셀에서 감소된 전해질 양의 비인 수율은 전해셀내 전해질인 KOH의 농도 및 인가전류의 크기가 커질수록 증가함을 보였으며 촉매 1의 성능이 가장 우수하였고 수율은 60%이하의 값을 보였다. 이론적인 패러데이 법칙을 이용하여 계산된 패러데이 수율은 촉매 1의 경우 거의 최대 100%에 가까운 수율도 보여주었다. 여러 촉매들은 유량속도에 따라 물의 생성량의 범위가 5-40 g/day인 성능을 보여주었다. 준균질 촉매 반응기 모델식으로 해석한 결과 반응기 내부의 가장 뜨거운 부분은 유량속도가 커질수록 출구 쪽으로 이동하고 온도는 $440-480^{\circ}K$ 사이였으며 점화온도에는 못 미치는 것으로 나타났다. 반응기 출구에서의 평균 수소농도로부터 계산한 물의 생성량을 실험값과 비교한 결과 유량속도가 약 $0.5cm^3/sec$이하인 경우 모델 결과와 부합됨을 알 수 있었으나 그 이상의 유량속도에서는 차이가 남을 알 수 있었다.

Keywords

References

  1. R. B. Levy and M. Boudart, "Platinum-like behavior of tungsten carbide in surface catalysis", Science, 181, 547(1973). https://doi.org/10.1126/science.181.4099.547
  2. Claus Zoellner, "External recombination system for vented lead/acid batteries used in float service", J. Power Sources, 59, 119(1996). https://doi.org/10.1016/0378-7753(95)02311-9
  3. I. Nikolov, G. Papazov, and V. Naidenov, "Activity and corrosion of tungsten carbide recombination electrodes during lead/acid battery operation", J. Power Sources, 40, 333(1992). https://doi.org/10.1016/0378-7753(92)80021-3
  4. I. Nikolov, G. Papazov, and V. Naidenov, "Performance of tungsten carbide recombination electrodes under various operating conditions", J. Power Sources, 40, 341(1992). https://doi.org/10.1016/0378-7753(92)80022-4
  5. H. Dietz, L. Dittmar, D. Ohms, M. Radwan, and K. Wiesener, "Noble metal-free catalysts for the hydrogen/oxygen recombination in sealed lead/acid batteries using immobilized electrolytes", J. Power Sources, 40, 175(1992). https://doi.org/10.1016/0378-7753(92)80050-L
  6. Vanasse, H. A. and Jones, D., "Catalyst 201: catalysts & poisons from the battery", Proceedings of BATTCON, Marco Island, FL(2003).
  7. Vanasse, H. A. and Jones, D., "Monobloc batteries: high temperatures, life and catalysts", Proceedings of BATTCON, Tampa, FL(2007).
  8. Carey O' Donnell and Michael Schiemann, "Hydrogen gas management for flooded lead acid batteries", Proceedings of BATTCON, Marco Island, FL(2008).
  9. S. C. Levy and M. E. Fiorino, "Batteries:portable power for the future", Electrochem. Soc. Interface, 4, 25(1995).
  10. P. D. Bennet, K. R. Bullock, and M. E. Fiorino, "Aqueous rechargeable batteries", Electrochem. Soc. Interface, 4, 26(1995).
  11. B. Hariprakash, Parthasarathi Bera, S. K. Martha, S. A. Gaffoor, M. S. Hegde, and A. K. Shukla, "Ceria-Supported platinum as hydrogen-oxygen Recombinant catalyst for sealed lead-acid batteries", Electrochemical and Solid-State Letters, 4 , A23(2001). https://doi.org/10.1149/1.1346537
  12. W. E. M. Jones and D. O. Feder, "Behavior of VRLA cells on long-term float", in Proceedings of the Eighteenth International Telecom Energy Conference, Boston, MA(1996).
  13. S. S. Misra, T. Noveske, and A. Williamson, "The role of recombination catalysts in VRLA cells", J. Power Sources, 95, 162( 2001). https://doi.org/10.1016/S0378-7753(00)00616-9
  14. F. Vaccaro, J. Rhoades, and B. Le. J. Timmons, "A Catalyst in a VRLA cell: A Tafel look, etc". in Proceedings of the Twenty-Third International Telecom Energy Conference, Edinburgh, Scotland(2001).
  15. R. W. Missen, C. A. Mims, and B. A. Saville, "Introduction to chemical reaction engineering and kinetics", John Wiley and Sons, New York(1999).
  16. T. Williams, K. Gazda, A. Kindler, Y. Huang, D. Karner, and J. Read, Reaction and thermal modeling of a packed bed reactor for hydrogen storage, Proceedings of the COMSOL Conference, Boston(2007).
  17. G. N. Pontikakis and A. M. Stamatelos, "Identification of catalytic converter kinetic model using a genetic algorithm approach", Proc. Inst. Mech. Engrs., Part D, J. Automobile Engineering, 218, 1455(2004). https://doi.org/10.1243/0954407042707696
  18. E. A. Reinecke, S. Kelm, S. Struth, C. Granzow and U. Schwarz, "Design of catalytic recombiners for safe removal of hydrogen from flammable gas mixtures", Proceedings of the 2nd International Conference on Hydrogen Safety, 11, San Sebastian, Spanien, September(2008).