DOI QR코드

DOI QR Code

Development of GDH-glucose Sensor using Ferrate Complex

철 화합물을 이용한 당 탈수소화 효소-혈당센서의 연구

  • Choi, Young-Bong (Department of chemistry, College of Advanced Science, Dankook University) ;
  • Lee, Jung-Min (Department of chemistry, College of Advanced Science, Dankook University) ;
  • Kim, Samantha Saeyoung (Gyeonggi Suwon International School) ;
  • Kim, Hyug-Han (Department of chemistry, College of Advanced Science, Dankook University)
  • 최영봉 (단국대학교 자연과학대학 화학과) ;
  • 이정민 (단국대학교 자연과학대학 화학과) ;
  • 김세영 (경기수원외국인학교) ;
  • 김혁한 (단국대학교 자연과학대학 화학과)
  • Received : 2013.12.04
  • Accepted : 2013.01.08
  • Published : 2014.02.28

Abstract

Redox complexes to transport electrons from enzyme to electrodes are very important part in glucose sensor. Pentacyanoferrate-bound aniline ($Fe(CN)_5$-aminopyridine), was prepared as a potential redox mediator in a glucose dehydrogenase (GDH)-glucose sensor. The synthesized pyridyl-$NH_2$ to pentacyanoferrate was characterized by the electrochemical and spectroscopic methods. A amperometric enzyme-linked electrode was developed based on GDH, which catalyses the oxidation of glucose. Glucose was detected using GDH that was co-immobilized with an $Fe(CN)_5$-aminopyridine and gold nano-particles (AuNPs) on ITO electrodes. The $Fe(CN)_5$-aminopyridine and AuNPs immobilized onto ITO electrodes provided about a two times higher electrochemical response compared to that of a bare ITO electrode. As glucose was catalyzed by wired GDH, the electrical signal was monitored at 0.4 V versus Ag/AgCl by cyclic voltammetry. The anode currents was linearly increased in proportion to the glucose concentration over the 0~10 mM range.

산화/환원 매개체는 혈당 센서의 구성에서 전극과 효소 반응의 전자 전달 매개체로서 중요한 역할을 담당한다. 본 연구에서는 기존의 산화/환원 매개체보다 전자 전달 반응이 용이하며, 높은 민감도를 위해 페레이트에 아닐린을 결합시켜, 1차 아민기를 갖는 $Fe(CN)_5$-aminopyridine를 합성하였다. 합성된 $Fe(CN)_5$-aminopyridine 는 순환 전압 전류 법과 분광학적 방법을 이용하여 합성 결과를 확인하였다. 합성된 물질과 포도당을 측정하기 위한 당 탈 수소 효소를 ITO 전극위에 고정시켜 효소전극을 제작하였고, 또한 신호 증폭을 위하여 금 나노 입자를 함께 고정시켰다. 금 나노 입자가 고정된 효소 전극은 그렇지 않은 전극에 비해 약 2배 가량의 전류 밀도가 증가함을 확인하였다. 만들어진 효소 전극에서 포도당의 농도 별 산화 촉매 전류를 순환 전압 전류 법으로 측정한 결과 0.4 V (vs. Ag/AgCl)에서 전기적 신호가 발생되었으며, 포도당 0~10 mM의 농도 범위에서 전기적 신호가 선형 증가함을 확인할 수 있었다.

Keywords

References

  1. L. C. Clark Jr. and C. Lyons, 'Electrode systems for continuous monitoring in cardiovascular surgery' Ann. N.Y. Acad. Sci., 102, 29 (1962).
  2. A. L. Crumbliss, H. A. O Hill, and D. J. Page, 'The electrochemistry of hexacyanoruthenate at carbon electrodes and the use of ruthenium compounds as mediators in the glucose/glucose oxidase system' J. Electroanal. Chem. Interfacial Electrochem., 206, 327 (1986). https://doi.org/10.1016/0022-0728(86)90280-9
  3. M. A. Lange and J. Q. Chambers, 'Amperometric determination of glucose with a ferrocene-mediated glucose oxidase/polyacrylamide gel electrode' Anal. Chim. Acta., 175, 89 (1985). https://doi.org/10.1016/S0003-2670(00)82720-8
  4. D. A. Gough, J. Y. Lucisano, and P. H. S. Tse, 'Two-dimensional enzyme electrode sensor for glucose' Anal. Chem., 57, 2351 (1985). https://doi.org/10.1021/ac00289a042
  5. A. P. F. Turner, 'Diabetes mellitus: biosensors for research and management' World Biotech. Rep., 1, 181 (1985).
  6. K. Mckenna and A. Brajter-Toth, 'Tetrathiofulvalene tetracyanoquinodimethane xanthine oxidase amperometric electrode for the determination of biological purines' Anal. Chem., 59, 954 (1987). https://doi.org/10.1021/ac00134a006
  7. P. D. Hale and T. A. Skotheim, 'Cyclic voltammetry at TCNQ and TTF-TCNQ modified platinum electrodes: A study of the glucose oxidase/glucose and galactose oxidase/galactose systems' Synth. Met., 28, 853 (1989). https://doi.org/10.1016/0379-6779(89)90613-9
  8. B. A. Gregg and A. Heller, 'Redox polymer films containing enzymes. 2. Glucose oxidase containing enzyme electrodes' J. Phys. Chem., 95, 5976 (1991). https://doi.org/10.1021/j100168a047
  9. B. P. Giordano, W. Thrash, L. Hollenbaugh, W. P. Dube, C. Hodges, A. Swain, C. R. Banion, G. L. Klingensmith, 'Performance of seven blood glucose testing systems at high altitude.' Diabetes Educ., 15, 444 (1989). https://doi.org/10.1177/014572178901500515
  10. O. Pecchio, S. Maule, M. Migliardi, M. Trento, and M. Veglio, 'Effects of exposure at an altitude of 3,000 m on performance of glucose meters' Diabetes Care., 23, 129, (2000).
  11. K. Moore, N. Vizzard, C. Coleman, J. McMahon, R. Hayes, and C. J. Thompson, 'Extreme altitude mountaineering and type 1 diabetes: the Diabetes Federation of Ireland Kilimanjaro Expedition' Diabet Med., 18, 749 (2001). https://doi.org/10.1046/j.0742-3071.2001.00568.x
  12. E. H. Piepmeier Jr., C. Hammett-Stabler, M. E. Price, G. B. Kemper, and M. G. Davis Jr., 'Atmospheric pressure effects on glucose monitoring devices' Diabetes Care., 18, 423 (1995).
  13. J. F. Gautier, A. X. Bigard, P. Douce, A. Duvallet, and G. Cathelineau, 'Influence of simulated altitude on the performance of five blood glucose meters' Diabetes Care., 19, 1430 (1996). https://doi.org/10.2337/diacare.19.12.1430
  14. C. Barnett, F. Ryan, and L. Ballonoff, 'Effect of altitude on the self-monitoring of blood-glucose' Diabetes., 36 (Suppl. 1), 117A (1987).
  15. M. S. Vreeke, K. T. Yong, and A. Heller, 'A Thermostable Hydrogen Peroxide Sensor Based on "Wiring" of Soybean Peroxidase' Anal. Chem., 67, 4247 (1995). https://doi.org/10.1021/ac00119a007
  16. R. M. Ianiello, T. J. Lindsay, and A. M. Yacynych, 'Differential pulse voltammetric study of direct electron transfer in glucose oxidase chemically modified graphite electrodes' Anal. Chem., 54, 1098 (1982). https://doi.org/10.1021/ac00244a019
  17. O. Miyawaki and L. B. Wingard, Jr., 'Electrochemical and enzymatic activity of flavin adenine dinucleotide and glucose oxidase immobilized by adsorption on carbon' Biotech. Bioeng., 26, 1364 (1984). https://doi.org/10.1002/bit.260261114
  18. S. Anderson, E. C. Constable, K. R. Seddon, E. T. Turp, J. E. Baggott, and J. Pilling, 'Preparation and characterization of 2,2-bipyridine-4,4-disulphonic and-5-sulphonic acids and their ruthenium(II) complexes' J. Chem. Soc. Dalton Trans., 2247 (1985).
  19. C. Taylor, G. Kenausis, I. Katakis, and A. Heller, '"Wiring" of glucose oxidase within a hydrogel made with polyvinyl imidazole complexed with $[(Os-4,4{\prime}-dimethoxy-2,2{\prime}-bipyridine)Cl]^{+/2+}$' J. Electroanal. Chem., 396, 511 (1995). https://doi.org/10.1016/0022-0728(95)04080-8
  20. T. J. ohara, R. Rajagopalan, and A. Heller, 'Glucose electrodes based on cross-linked bis(2,2'-bipyridine) $chloroosmium^{(+/2+)}$ complexed poly(1-vinylimidazole) films' Anal.Chem., 65, 3512 (1993). https://doi.org/10.1021/ac00071a031
  21. M. N. Zafar, N. Beden, D. Leech, C. Sygmund, R. Ludwig, and L. Gorton, 'Characterization of different FAD-dependent glucose dehydrogenases for possible use in glucose-based biosensors and biofuel cells' Anal. Bioanal. Chem., 402, 2069 (2012). https://doi.org/10.1007/s00216-011-5650-7
  22. C. H Nieh, S. Tsujimura, O. Shirai, and K. Kano, 'Electrostatic and steric interaction between redox polymers and some flavoenzymes in mediated bioelectrocatalysis' J. Electroanal. Chem., 689, 26 (2013) https://doi.org/10.1016/j.jelechem.2012.11.023
  23. M. V. Pishko, A. C. Michael, and Adam Heller, 'Amperometric glucose microelectrodes prepared through immobilization of glucose oxidase in redox hydrogels' Anal. Chem., 63, 2269 (1991).
  24. H. Yang, T. D. Chung, Y. T. Kim, C. A. Choi, C. H. Jun, and H. C. Kim, 'Glucose sensor using a microfabricated electrode and electropolymerized bilayer films' Biosens. Bioelectron., 17, 251 (2002). https://doi.org/10.1016/S0956-5663(01)00266-4
  25. T. J. Ohara, R. Rajagopalan, and A. Heller, ''Wired' enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances' Anal. Chem., 66, 2451 (1994). https://doi.org/10.1021/ac00087a008
  26. M. O. Finot, G. D. Braybrook, and M. T. McDermott, 'Characterization of electrochemically deposited gold nanocrystals on glassy carbon electrodes' J. Electroanal. Chem., 466, 234, (1999). https://doi.org/10.1016/S0022-0728(99)00154-0
  27. M. O. Finot and M. T. McDermott, 'Characterization of n-alkanethiolate monolayers adsorbed to electrochemically deposited gold nanocrystals on glassy carbon electrodes' J. Electroanal. Chem., 488, 125 (2000). https://doi.org/10.1016/S0022-0728(00)00201-1
  28. Asep Rohiman, Isa Anshori, Akhmadi Surawijaya, and Irman Idris, 'Study of Colloidal Gold Synthesis Using Turkevich Method' AIP Conf. Proc., 1415, 39 (2011).
  29. G. Binyamin, J. Cole, and A. Heller, 'Mechanical and Electrochemical Characteristics of Composites of Wired Glucose Oxidase and Hydrophilic Graphite' J. Electrochem. Soc., 147, 2780 (2000). https://doi.org/10.1149/1.1393606
  30. G. Binyamin and A. Heller, 'Stabilization of Wired Glucose Oxidase Anodes Rotationg at 1000 rpm at 37'. J. Electrochem. Soc., 146, 2965 (1999). https://doi.org/10.1149/1.1392036
  31. E. Steckhan and T. Kuwana, 'Spectrochemical studu of mediators. I. Bipyridylium Salts and their electron transfer rates to cytochrome C.' Ber. Bunsenges. Phys. Chem., 89, 253 (1974).
  32. P. Calvert, P. Patra, and D. Duggal, 'Epoxy hydrogels as sensors and actuators' EAPAD., 6524, 65240M (2007).