DOI QR코드

DOI QR Code

Study on the Thickness Effect of the Separator for Lithium Secondary Batteries

리튬이차전지용 분리막의 두께에 따른 특성 연구

  • 김상우 (공주대학교 신소재공학부) ;
  • 석지후 (공주대학교 신소재공학부) ;
  • 김병현 (더블유스코프코리아(주) 연구개발팀) ;
  • 조희민 (더블유스코프코리아(주) 연구개발팀) ;
  • 조국영 (공주대학교 신소재공학부)
  • Received : 2013.11.30
  • Accepted : 2013.12.04
  • Published : 2014.02.28

Abstract

There is increasing demand on the reducing the weight and the volume of the major components in lithium secondary battery to improve energy density. Separator not only provides pathway for lithium ion movement but also prevents direct contact between anode and cathode. Herein we fabricated polyethylene separator by varying biaxial stretching ratio to obtain membrane thickness of 16, 12, and $9{\mu}m$. Mechanical and thermal properties of the separator with different thickness were investigated. Also rate capability and charge-discharge cycle property up to 500 cycles were studied using coin type full-cell with $LiCoO_2$ and graphite as a cathode and an anode, respectively. All the cells using separator with different thickness demonstrated excellent capacity retention after 500cycles (around 80%). Considering the rate capability, cell using separator with thickness of $9{\mu}m$ showed best performance. Interestingly, separator thickness of $9{\mu}m$ was more resistant to heat contraction compared to that of $16{\mu}m$ separator.

리튬이차전지의 고에너지 밀도화를 위해 전지 구성요소들의 무게 및 부피를 저감하려는 요구가 증가하고 있다. 분리막은 리튬이온의 이동통로를 제공할 뿐만 아니라 양극과 음극의 직접적인 접촉을 방지하는 핵심 부품이다. 본 연구에서는 연신 비율을 달리하여 습식방법을 통해 두께가 16, 12, $9{\mu}m$ 인 폴리에틸렌 분리막을 준비하였고, 각각의 기계적 강도 및 열적특성을 평가하였다. 또한 양극($LiCoO_2$), 음극(Graphite)을 사용한 Coin type full-cell을 제작하여 율속 특성 및 500cycle까지 사이클 수명특성을 평가하였다. 수명특성 평가를 통해 사용된 모든 두께의 분리막에서 500cycle 까지 큰 차이 없이 80% 정도의 용량유지 결과를 확인하였다. 율속 특성에서는 가장 얇은 $9{\mu}m$ 분리막이 가장 우수한 성능을 나타내었다. 흥미롭게도 $9{\mu}m$의 분리막이 $16{\mu}m$ 경우보다 열 수축률 평가에서 우수한 특성을 나타내었다.

Keywords

References

  1. X. Huang, 'Separator technologies for lithium-ion batteries' J. Solid State Electrochem., 15, 649 (2011). https://doi.org/10.1007/s10008-010-1264-9
  2. M. J. Weighall, 'Recent advances in polyethylene separator technology' J. Power Sources, 34, 257 (1991). https://doi.org/10.1016/0378-7753(91)80092-C
  3. D. Dunn-Rankin, E. M. Leal, and D. C. Walther, 'Personal power systems' Prog. Energy Combust. Sci., 31, 422 (2005). https://doi.org/10.1016/j.pecs.2005.04.001
  4. Y. T. Kim, and E. S. Smotkin, 'The effect of plasticizers on transport and electrochemical properties of PEO-based electrolytes for lithium rechargeable batteries' Solid State Ionics, 149, 29 (2002). https://doi.org/10.1016/S0167-2738(02)00130-3
  5. R. Marom, S. F. Amalraj, N. Leifer, D. Jacob, and D. Aurbach, 'A review of advanced and practical lithium battery materials' J. Mater. Chem., 21, 9938 (2011). https://doi.org/10.1039/c0jm04225k
  6. P. Arora, and Z. Zhang, 'Battery Separators' Chem. Rev., 104, 4419 (2004). https://doi.org/10.1021/cr020738u
  7. G. Venugopal, J. Moore, J. Howard, and S. Pendalwar, 'Characterization of microporous separators for lithiumion batteries' J. Power Sources, 77, 34 (1999). https://doi.org/10.1016/S0378-7753(98)00168-2
  8. S. S. Zhang, 'A review on the separators of liquid electrolyte Li-ion batteries' J. Power Sources, 164, 351 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.065
  9. S. Lee, and S.-W. Ryu, 'Influence of heat treatment on separators for lithium secondary batteries' Polymer (Korea), 36, 93 (2011). https://doi.org/10.7317/pk.2012.36.1.093
  10. J.-H. Park, J.-H. Cho, W. Park, D. Ryoo, S.-J. Yoon, J. H. Kim, Y. U. Jeong, and S.-Y. Lee, 'Close-packed $SiO_2$/poly(methyl methacrylate) binary nanoparticles-coated polyethylene separators for lithium-ion batteries' J. Power Sources, 195, 8306 (2010). https://doi.org/10.1016/j.jpowsour.2010.06.112
  11. D. Takemura, S. Aihara, K. Hamano, M. Kise, T. Nishimura, H. Urushibata, and H. Yoshiyasu, 'A powder particle size effect on ceramic powder based separator for lithium rechargeable battery' J. Power Sources, 146, 779 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.159
  12. K.-H. Choi, S.-J. Cho, S.-H. Kim, Y. H. Kwon, J. Y. Kim, and S.-Y. Lee, 'Thin, deformable, and safetyreinforced plastic crystal polymer electrolytes for highperformance flexible lithium-ion batteries' Adv. Funct. Mater., 24, 44 (2014). https://doi.org/10.1002/adfm.201301345
  13. H.-S. Jeong, and S.-Y. Lee, 'Closely packed $SiO_2$ nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithiumion batteries' J. Power Sources, 196, 6716 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.037