DOI QR코드

DOI QR Code

Characterization of geopolymer made of municipal solid waste incineration ash slag

도시쓰레기 소각재 슬래그로 제조된 지오폴리머의 특성

  • Kim, Yongsung (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Kang, Seunggu (Department of Advanced Materials Engineering, Kyonggi University)
  • 김용성 (경기대학교 신소재공학과) ;
  • 강승구 (경기대학교 신소재공학과)
  • Received : 2013.12.17
  • Accepted : 2013.12.27
  • Published : 2014.02.28

Abstract

In this research, the geopolymer was fabricated using municipal solid waste incineration ash (denoted as MSWIA) slag and alkali activator, NaOH and its properties were analyzed. Particularly, the effects of NaOH molarity, particle size of MSWIA, and liquid/solids ratio on the compressive strength of geopolymers were investigated. The compressive strength of geopolymers fabricated increased with finer grain size of MSWIA, and optimum value of the liquid/solids ratio was identified as 0.13. As the molarity of the NaOH increased, the compressive strength of geopolymers was increased. Even more the 20 M of NaOH, but the strength was not increased. The calcium aluminum silicate and calcium aluminum silicate hydrate zeolites were generated in the geopolymer fabricated with more than 20 M of NaOH, with some unreacted silica and unknown crystals remained. The highest compressive strength, 163 MPa, of geopolymer was appeared at conditions of curing temperature $70^{\circ}C$, and 20 M of NaOH, indicating that the high concentration of NaOH accelerates the geopolymer reaction and dense microstructure. The high-strength geopolymer fabricated in the present study is expected to contribute significantly to develop the field of cement alternative substances and to improve the recycling rate of MSWIA slag.

본 연구에서는 도시 쓰레기 소각재 슬래그에 알칼리 활성화제로서 NaOH를 첨가하여 지오폴리머를 합성하고 그 물성을 평가하였다. 특히 NaOH의 몰농도, 원료의 입도 그리고 액체/고체 비율이 제조된 지오폴리머의 압축강도에 미치는 영향을 조사하였다. 원료의 입도가 미세할수록 합성된 지오폴리머의 강도는 증가하였으며, 액체/고체 비율의 최적 값은 0.13으로 나타났다. 합성된 지오폴리머의 압축강도는 첨가된 NaOH의 몰농도가 증가함에 따라 함께 증가하는 경향을 나타내었으나, 20 M 이상의 농도에서는 일정 값에 수렴하였다. 20 M 이상의 NaOH 농도로 제조된 지오폴리머에는 sodium aluminum silicate 및 sodium aluminum silicate hydrate 형태의 2종류 zeolite 결정상이 생성되었다. 20 M NaOH 및 $70^{\circ}C$ 양생조건으로 제조된 시편에서 가장 높은 압축강도, 163 MPa이 발현되었으며, 이것은 고농도의 NaOH가 지오폴리머 반응 및 치밀한 미세구조 형성을 촉진시켰기 때문인 것으로 사료된다. 본 연구에서 제조된 고강도의 지오폴리머는 향후, 도시쓰레기 소각재 슬래그의 재활용율 제고는 물론 시멘트 대체 분야 발전에 일조할 것으로 기대된다.

Keywords

References

  1. P. Friedlingstein, R. Houghton, G. Marland, J. Hackler, T. Boden, T. Conway, J. Canadell, M. Raupach, P. Ciais and C. Le Quere, "Update on $CO_2$ emissions", Nat. Geosci. 12 (2010) 811.
  2. J.M. Allwood, J.M. Cullen and R.L. Milford, "Options for achieving a 50 % cut in industrial carbon emissions by 2050", Part. Sci. Technol. 44 (2010) 1888. https://doi.org/10.1021/es902909k
  3. K. Komnitas and D. Zaharaki, "Geopolymerisation; A review and prospects for the minerals industry", Miner. Eng. 20 (2007) 1261. https://doi.org/10.1016/j.mineng.2007.07.011
  4. Y.T. Kim, H.J. Kim and C.S. Jang, "Characteristics of geopolymer based on recycling resources", J. Korean Cryst. Growth Cryst. Technol. 22 (2012) 152. https://doi.org/10.6111/JKCGCT.2012.22.3.152
  5. J. Davidovits, "The polysialate terminology: A very useful and simple model for the promotion and understanding of green-chemistry, in geopolymer, green chemistry and sustainable development solutions", Proceedings of the world congress geopolymer, Geopolymer Institute, Saint-Quentin, France. Ed. (2005) 9.
  6. R.A. Fletcher, K.J.D. Mackenzie, C.L. Nicholson and S. Shimada, "The composition range of aluminosilicate geopolymers", J. Eur. Ceram. Soc. 25 (2005) 1471. https://doi.org/10.1016/j.jeurceramsoc.2004.06.001
  7. J.G.S. van Jaarsveld, J.S.J. van Deventer and L. Lorenzen, "The potential use of geopolymeric materials to immobilise toxic metals", Miner. Eng. 10 (1997) 659. https://doi.org/10.1016/S0892-6875(97)00046-0
  8. J. Davidovits, "Geopolymers: inorganic polymeric new materials", Therm. Anal. 37 (1991) 1633. https://doi.org/10.1007/BF01912193
  9. P. Duxson, J.L. Provis, G. Lukey, S.J. Jannie and V. Deventer, "The role of inorganic polymer technology in the development of green concrete", Cem. Concr. Res. 37 (2007) 1590. https://doi.org/10.1016/j.cemconres.2007.08.018
  10. J.K. Lee, Y.S. Choo and S.J. Jung, "Situation and prospect of Geopolymer", Ceramist. 9 (2006) 44.
  11. Y.T. Kim, H.J. Kim and C.S. Jang, "Property enhancement of geopolymer by means of separation/classification of spent-resources", J. Korean Cryst. Growth Cryst. Technol. 22 (2012) 299. https://doi.org/10.6111/JKCGCT.2012.22.6.299
  12. Annual Report: Status of operation of the resource recovery facility of municipal waste, Ministry of Environment, Korea (2012)
  13. K. Sreenivasarao, G.W. Warren, M.D. Mckinley and G. Gao, "Hydrometallurgical treatment of municipal solid waste fly-ash for simultaneous detoxification and metal recovery", J. Environ. Sci. Health A32 (1997) 1225.
  14. K.L. Lin and C.T. Chang, , "Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash", J. Hazard. Mater. B135 (2006) 296.
  15. J.E Aubert, B. Husson and N. Sarramone, "Utilization of municipal solid waste incineration (MSWI) fly-ash in blended cement: Part 2. Mechanical strength of mortars and environmental impact", J. Hazard. Mater. 146 (2007) 12. https://doi.org/10.1016/j.jhazmat.2006.11.044
  16. Q. Wang, S. Tian, Q. Wang, Q. Huang and J. Yang, "Melting characteristics during the vitrification of MSWI fly ash with a pilot-scale diesel oil furnace", J. Hazard. Mater. 160 (2008) 376. https://doi.org/10.1016/j.jhazmat.2008.03.043
  17. K.L. Lin, K.S. Wang, B.Y. Tzeng and C.Y. Lin, "The reuse of municipal solid waste incinerator fly ash slag as a cement substitute", Res. Conserv. and Recyc. 39 (2003) 315. https://doi.org/10.1016/S0921-3449(02)00172-6
  18. K.L. Lin, K.S. Wang and C.H. Lin "The hydration properties of pastes containing municipal solid waste incinerator fly ash slag", J. Hazard. Mater. B109 (2004) 173.
  19. J. He, Y. Jie, J. Zhang, Y. Yu and G. Zhang, "Synthesis and characterization of red mud and rice husk ash-based geopolymer composites", Cem. Concr. Comp. 37 (2013) 108. https://doi.org/10.1016/j.cemconcomp.2012.11.010
  20. P. Duxson, "Geopolymer technology: the ccurrent state of the art", J. Mater. Sci. 42 (2007) 2917. https://doi.org/10.1007/s10853-006-0637-z
  21. J. Ambroise, M. Murat and J. Pera, "Hydration reaction and hardening of calcined clays and related minerals V. Extension of the research and general conclusions", Cem. Concr. Res. 15 (1985) 261. https://doi.org/10.1016/0008-8846(85)90037-7
  22. J.T. Kim, D.S. Seo, G.J. Kim and J.K. Lee, "Influence of alkaline-activator content on the compressive strength of aluminosilicate-based geopolymer", J. Kor. Ceram. Soc. 47 (2010) 216. https://doi.org/10.4191/KCERS.2010.47.3.216

Cited by

  1. Performance Degradation of Cement Composite Containing Municipal Solid Waste Incinerator Ash by Unburned Fabric vol.24, pp.4, 2015, https://doi.org/10.7844/kirr.2015.24.4.3
  2. Anti-biofouling properties of silver nano-particle coated artificial light-weight aggregates vol.25, pp.5, 2015, https://doi.org/10.6111/JKCGCT.2015.25.5.212
  3. Properties of non-cement mortars with small addition of alkali activator using fly ash and fused waste slag vol.25, pp.6, 2015, https://doi.org/10.6111/JKCGCT.2015.25.6.257