DOI QR코드

DOI QR Code

Fine-scale initiation of non-native Robinia pseudoacacia riparian forests along the Chikumagawa River in central Japan

  • Kurokochi, Hiroyuki (Graduate School of Agricultural and Life Sciences, University of Tokyo) ;
  • Hogetsu, Taizo (Graduate School of Agricultural and Life Sciences, University of Tokyo)
  • Received : 2013.12.10
  • Accepted : 2014.02.10
  • Published : 2014.02.28

Abstract

Robinia pseudoacacia has become invasively naturalized in Japan. We investigated the role of sexual reproduction in the development of R. pseudoacacia riparian forests along the Chikumagawa River in Japan, by using five chloroplast (cpSSR) and seven nuclear (nSSR) markers. We identified eight chloroplast haplotypes and 147 nuclear genotypes from 619 R. pseudoacacia trees sampled in three plots (Plots A, B, and C) and along two line transects (Lines D and E). CpSSR analyses showed that multiple maternal lines were distributed along the river, and that some haplotypes from different populations overlapped. In addition, while Plots A and B were separated by a short distance, only these two plots exhibited genetic differentiation in the haplotypes. In the nSSR analysis, all pairwise $F_{ST}$ values among the three plots were significantly different from zero. Kinship analysis based on nSSR markers revealed that kinship connected many individuals to another individual from the same plot. These results indicate that seed dispersal near to mother trees contributes to the fine-scale genetic structure of R. pseudoacacia riparian forests. Our results indicate that sexual reproduction, in addition to asexual reproduction, is a major contributor to the fine-scale formation of R. pseudoacacia forests.

Keywords

References

  1. Aldrich PR, Briguglio JS, Kapadia SN, Morker MU, Rawal A, Kalra P, Huebner CD, Greer GK. 2010. Genetic structure of the invasive tree Ailanthus altissima in eastern United States cities. J Bot. DOI 10.1155/2010/795735.
  2. Boring LR, Swank WT. 1984. The role of black locust (Robinia pseudoacacia) in forest succession. J Ecol 72: 749-766. https://doi.org/10.2307/2259529
  3. Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D. 2005. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144: 1-11. https://doi.org/10.1007/s00442-005-0070-z
  4. Cousens R, Dytham C, Law R. 2008. Dispersal in Plants: A Population Perspective. Oxford University Press, New York, NY.
  5. Dunphy BK, Hamrick JL. 2005. Gene flow among established Puerto Rican populations of the exotic tree species, Albizia lebbeck. Heredity 94: 418-425. https://doi.org/10.1038/sj.hdy.6800622
  6. Fukuda M, Sakio H, Maruta E. 2005. Seedling establishment of exotic tree Robinia pseudoacacia L. on the flood plain of the Arakawa River. Jpn J Ecol 55: 387-395.
  7. Geng QF, Lian CL, Goto S, Tao JM, Kimura M, Islam MDS, Hogetsu T. 2008. Mating system, pollen and propagule dispersal, and spatial genetic structure in a high-density population of the mangrove tree Kandelia candel. Mol Ecol 17: 4724-4739. https://doi.org/10.1111/j.1365-294X.2008.03948.x
  8. Jung SC, Matsushita N, Wu BY, Kondo N, Shiraishi A, Hogetsu T. 2009. Reproduction of a Robinia pseudoacacia population in a coastal Pinus thunbergii windbreak along the Kujukurihama Coast, Japan. J For Res 14: 101-110. https://doi.org/10.1007/s10310-008-0109-1
  9. Keim RF, Chambers JL, Hughes MS, Dimov LD, Conner WH, Shaffer GP, Gardiner ES, Day JW. 2006. Long-term success of stump sprouts in high-graded baldcypress-water tupelo swamps in the Mississippi delta. For Ecol Manage 234: 24-33. https://doi.org/10.1016/j.foreco.2006.06.015
  10. Konovalov DA, Manning C, Henshaw MT. 2004. KINGROUP: a program for pedigree relationship reconstruction and kin group assignments using genetic markers. Mol Ecol Notes 4: 779-782. https://doi.org/10.1111/j.1471-8286.2004.00796.x
  11. Kurokochi H, Saito Y, Chuman M, Ide Y. 2013. Low chloroplast diversity despite of phylogenetically divergent haplotypes in Japanese populations of Ailanthus altissima (Simaroubaceae). Botany 91: 148-154. https://doi.org/10.1139/cjb-2012-0159
  12. Kurokochi H, Toyama K, Hogetsu T. 2010. Regeneration of Robinia pseudoacacia riparian forests after clear-cutting along the Chikumagawa River in Japan. Plant Ecol 210: 31-41. https://doi.org/10.1007/s11258-010-9735-8
  13. Landenberger RE, Warner TA, McGraw JB. 2009. Spatial patterns of female Ailanthus altissima across an urban-torural land use gradient. Urban Ecosyst 12: 437-448. https://doi.org/10.1007/s11252-009-0087-x
  14. Langella O. 2007. Populations 1.2.30: population genetic software (individuals or populations distances, phylogenetic trees). http://bioinformatics.org/-tryphon/ populations. Accessed 12 November 2013.
  15. Le Roux JJ, Brown GK, Byrne M, Ndlovu J, Richardson DM, Thompson GD, Wilson JRU. 2011. Phylogeographic consequences of different introduction histories of invasive Australian Acacia species and Paraserianthes lophantha (Fabaceae) in South Africa. Divers Distrib 17: 861-871. https://doi.org/10.1111/j.1472-4642.2011.00784.x
  16. Lian C, Hogetsu T. 2002. Development of microsatellite markers in black locust (Robinia pseudoacacia) using a dual-suppression-PCR technique. Mol Ecol Notes 2: 211-213.
  17. Lian CL, Oishi R, Miyashita N, Nara K, Nakaya H, Wu BY, Zhou ZH, Hogetsu T. 2003. Genetic structure and reproduction dynamics of Salix reinii during primary succession on Mount Fuji, as revealed by nuclear and chloroplast microsatellite analysis. Mol Ecol 12: 609-618. https://doi.org/10.1046/j.1365-294X.2003.01756.x
  18. Maekawa M, Nakagoshi N. 1997. Riparian landscape changes over a period of 46 years, on the Azusa River in Central Japan. Landsc Urban Plan 37: 37-43. https://doi.org/10.1016/S0169-2046(96)00368-4
  19. Marshall TC, Slate J, Kruuk LEB, Pemberton JM. 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7: 639-655. https://doi.org/10.1046/j.1365-294x.1998.00374.x
  20. Masaka K, Yamada K. 2009. Variation in germination character of Robinia pseudoacacia L. (Leguminosae) seeds at individual tree level. J For Res 14: 167-177. https://doi.org/10.1007/s10310-009-0117-9
  21. Masaka K, Yamada K, Koyama Y, Sato H, Kon H, Torita H. 2010. Changes in size of soil seed bank in Robinia pseudoacacia L. (Leguminosae), an exotic tall tree species in Japan: Impacts of stand growth and apicultural utilization. For Ecol Manage 260: 780-786. https://doi.org/10.1016/j.foreco.2010.05.036
  22. Mishima K, Hirao T, Urano S, Watanabe A, Takata K. 2009. Isolation and characterization of microsatellite markers from Robinia pseudoacacia L. Mol Ecol Resour 9: 850-852. https://doi.org/10.1111/j.1755-0998.2008.02306.x
  23. Negreros-Castillo P, Hall RB. 2000. Sprouting capability of 17 tropical tree species after overstory removal in Quintana Roo, Mexico. For Ecol Manage 126: 399-403. https://doi.org/10.1016/S0378-1127(99)00109-7
  24. O'Hara KL, Stancioiu PT, Spencer MA. 2007. Understory stump sprout development under variable canopy density and leaf area in coast redwood. For Ecol Manage 244: 76-85. https://doi.org/10.1016/j.foreco.2007.03.062
  25. Pairon M, Petitpierre B, Campbell M, Guisan A, Broennimann O, Baret PV, Jacquemart, AL, Besnard G. 2010. Multiple introductions boosted genetic diversity in the invasive range of black cherry (Prunus serotina; Rosaceae). Ann Bot 105: 881-890. https://doi.org/10.1093/aob/mcq065
  26. Parker IM, Simberloff D, Lonsdale WM, Goodell K, Wonham M, Karieva PM, Williamson MH, Von Holle B, Moyle PB, Byers JE, Goldwasser L. 1999. Impact: towards a framework for understanding the ecological effects of invaders. Biol Invas 1: 3-19. https://doi.org/10.1023/A:1010034312781
  27. Rosenthal DM, Ramakrishnan AP, Cruzan MB. 2008. Evidence for multiple sources of invasion and intraspecific hybridization in Brachypodium sylvaticum (Hudson) Beauv. in North America. Mol Ecol 17: 4657-4669. https://doi.org/10.1111/j.1365-294X.2008.03844.x
  28. Sakio H. 2009. Ecology of Robinia pseudoacacia. Bun-ichi shuppan, Tokyo.
  29. Sato T, Isagi Y, Sakio H, Osumi K, Goto S. 2006. Effect of gene flow on spatial genetic structure in the riparian canopy tree Cercidiphyllum japonicum revealed by microsatellite analysis. Heredity 96: 79-84. https://doi.org/10.1038/sj.hdy.6800748
  30. Schneider S, Roessli D, Excoffier L. 2000. Arlequin ver. 2.000: a software package for population genetics data analysis [user's manual]. Genetics and Biometry Laboratory, University of Geneva, Switzerland.
  31. Society for History of Chikumagawa and Saigawa River. 2003. A century of the Chikumagawa river: survey maps in 1951 and at the present day. Shinano-mainishi-shinbunsya, Nagano. (in Japanese)
  32. Streiff R, Labee T, Bacilieri R, Steinkellner H, Gloessl J, Kremer A. 1998. Within-population genetic structure in Quercus robur L. and Quercus petraea (Matt.) Liebl. assessed with isozymes and microsatellites. Mol Ecol 7: 317-328. https://doi.org/10.1046/j.1365-294X.1998.00360.x
  33. Sun F, Yang MS, Zhang J, Gu JT. 2009. ISSR analysis of genetic diversity of Robinia pseudoacacia populations. J Plant Genet Resour. DOI CNKI:SUN:ZWYC.0.2009-01-019.
  34. Takahashi A, Koyama H, Takahashi N. 2008. Habitat expansion of Robinia pseudoacacia L. and role of seed banks in the Akagawa River basin. J Jpn For Soc 90: 1-5. https://doi.org/10.4005/jjfs.90.1
  35. Vitousek PM. 1990. Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57: 7-13. https://doi.org/10.2307/3565731

Cited by

  1. Invasive Tree Species Robinia pseudoacacia: A Potential Biomass Resource in Nagano Prefecture, Japan vol.14, pp.2, 2015, https://doi.org/10.1007/s11842-014-9282-6
  2. , a poisonous tree insulated from the browsing pressure of herbivores, using a next-generation sequencer vol.20, pp.1, 2015, https://doi.org/10.1007/s10310-014-0456-z
  3. Expansion of an invasive species, Ailanthus altissima, at a regional scale in Japan vol.38, pp.1, 2015, https://doi.org/10.5141/ecoenv.2015.005
  4. Blume in Japan as revealed by chloroplast DNA sequences vol.93, pp.12, 2015, https://doi.org/10.1139/cjb-2015-0025
  5. ) in Japan: evidence for two distinct origins with limited admixture vol.93, pp.3, 2015, https://doi.org/10.1139/cjb-2014-0181
  6. , a poisonous tree protected from herbivore browsing pressure, increase slowly but steadily vol.21, pp.3, 2016, https://doi.org/10.1007/s10310-016-0521-x
  7. Local-Level Genetic Diversity and Structure of Matsutake Mushroom (Tricholoma matsutake) Populations in Nagano Prefecture, Japan, Revealed by 15 Microsatellite Markers vol.3, pp.2, 2017, https://doi.org/10.3390/jof3020023
  8. The effect of the shortage of gravel sediment in midstream river channels on riparian vegetation cover vol.33, pp.7, 2017, https://doi.org/10.1002/rra.3166
  9. A few north Appalachian populations are the source of European black locust vol.9, pp.5, 2014, https://doi.org/10.1002/ece3.4776
  10. Effect of damaged horizontal roots caused by forestry vehicles on the root sucker emergence of Robinia pseudoacacia in a coastal Pinus thunbergii forest vol.46, pp.2, 2014, https://doi.org/10.7211/jjsrt.46.237