DOI QR코드

DOI QR Code

ORE EXTENSIONS OF HOPF GROUP COALGEBRAS

  • Wang, Dingguo (School of Mathematical Sciences Qufu Normal University) ;
  • Lu, Daowei (School of Mathematical Sciences Qufu Normal University)
  • Received : 2013.06.05
  • Published : 2014.03.01

Abstract

The aim of this paper is to generalize the theory of Hopf-Ore extension on Hopf algebras to Hopf group coalgebras. First the concept of Hopf-Ore extension of Hopf group coalgebra is introduced. Then we will give the necessary and sufficient condition for the Ore extensions to become a Hopf group coalgebra, and certain isomorphism between Ore extensions of Hopf group coalgebras are discussed.

Keywords

References

  1. M. Beattie, S. Dascalescu, and L. Grunenfelder, Constructing pointed Hopf algebras by Ore extensions, J. Algebra 225 (2000), no. 2, 743-770. https://doi.org/10.1006/jabr.1999.8148
  2. M. Beattie, S. Dascalescu, L. Grunenfelder, and C. Nastasescu, Fitness conditions, co-Frobenius Hopf algebras and quantum group, J. Algebra 200 (1998), no. 1, 312-333. https://doi.org/10.1006/jabr.1997.7238
  3. A. S. Hegazi, W. Morsi, and M. Mansour, Differential calculus on Hopf group coalgebras, Note Mat. 29 (2009), no. 1, 1-40.
  4. S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, Providence, RI, 1993.
  5. A. Nenciu, Quasitriangular structures for a class of pointed Hopf algebras constructed by Ore extensions, Comm. Algebra 29 (2001), no. 8, 3419-3432. https://doi.org/10.1081/AGB-100105029
  6. A. N. Panov, Ore extensions of Hopf algebras, Math. Notes 74 (2003), no. 3-4, 401-410. https://doi.org/10.1023/A:1026115004357
  7. M. E. Sweedler, Hopf Algebras, Math. Lecture Notes Ser., Benjamin, New York, 1969.
  8. V. G. Turaev, Homotopy field theory in dimension 3 and crossed group-categories, Preprint GT/0005291,(2000).
  9. V. G. Turaev, Crossed group-categories, Arab. J. Sci. Eng. Sect. C Theme Issues 33 (2008), no. 2, 483-503.
  10. A. Van Daele, Multiplier Hopf algebras, Trans. Amer. Math. Soc. 342 (1994), no. 2, 917-932. https://doi.org/10.1090/S0002-9947-1994-1220906-5
  11. A. Virelizier, Hopf group coalgebras, J. Pure Appl. Algebra 171 (2002), no. 1, 75-122. https://doi.org/10.1016/S0022-4049(01)00125-6
  12. S. H. Wang, Turaev group coalgebras and twisted Drinfeld double, Indiana Univ. Math. J. 58 (2009), no. 3, 1395-1417. https://doi.org/10.1512/iumj.2009.58.3569
  13. L. Zhao and D. Lu, Ore Extension of Multiplier Hopf algebras, Comm. Algebra 40 (2012), no. 1, 248-272. https://doi.org/10.1080/00927872.2010.529858
  14. M. Zunino, Double construction for crossed Hopf coalgebra, J. Algebra. 278 (2004), no. 1, 43-75. https://doi.org/10.1016/j.jalgebra.2004.03.019
  15. M. Zunino, Yetter-Drinfeld modules for crossed structures, J. Pure Appl. Algebra 193 (2004), no. 1-3, 313-343. https://doi.org/10.1016/j.jpaa.2004.02.014

Cited by

  1. Ore extensions of quasitriangular Hopf group coalgebras vol.13, pp.06, 2014, https://doi.org/10.1142/S0219498814500169