DOI QR코드

DOI QR Code

IDENTITIES FOR 3-CORE AND 5-CORE PARTITIONS

  • Received : 2013.01.08
  • Accepted : 2013.10.30
  • Published : 2014.03.01

Abstract

We apply modular function theory to find the relation among t-core partitions. By using the generators of function field corresponding to a certain modular group, we reprove the identities in [1] because their relations are linear for t = 3 or 5.

Keywords

References

  1. N. Baruah and B. C. Berndt, Partition identities and Ramanujan's modular equations, J. Combin. Theory Ser. A 114 (2007), no. 6, 1024-1045. https://doi.org/10.1016/j.jcta.2006.11.002
  2. A. Berkovich and H. Yesilyurt, New identities for 7-cores with prescribed BG-rank, Discrete Math. 308 (2008), no. 22, 5246-5259. https://doi.org/10.1016/j.disc.2007.09.044
  3. B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991.
  4. B. Cho, J. K. Koo, and Y. K. Park, Arithmetic of the Ramanujan-Gollnitz-Gordon continued fraction, J. Number Theory 129 (2009), no. 4, 922-947. https://doi.org/10.1016/j.jnt.2008.09.018
  5. F. Garvan, D. Kim, and D. Standon, Cranks and t-cores, Invent. Math. 101 (1990), no. 1, 1-17. https://doi.org/10.1007/BF01231493
  6. M. D. Hirschhorn and J. A. Sellers, Elementary proofs of various facts about 3-cores, Bull. Aust. Math. Soc. 79 (2009), no. 3, 507-512. https://doi.org/10.1017/S0004972709000136
  7. N. Ishida and N. Ishii, The equations for modular function fields of principal congruence subgroups of prime level, Manuscripta Math. 90 (1996), no. 3, 271-285. https://doi.org/10.1007/BF02568306
  8. B. Kim, On inequalities and linear relations for 7-core partitions, Discrete Math. 310 (2010), no. 4, 861-868. https://doi.org/10.1016/j.disc.2009.09.024
  9. D. Kubert and S. Lang, Modular Units, Springer-Verlag, New York-Berlin, 1981.
  10. S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957.