초록
This paper provides a comprehensive study on the Sommerfeld phenomena in an asymmetric rotor with a nonideal power supply. An analytical approach is employed by deriving the equations of motion in a nondimensional form. The system parameters, including the asymmetry, external and internal damping, and motor power, are chosen to find their effects on the characteristics of the Sommerfeld phenomena and critical behavior around resonance. Results show that the rotor asymmetry suppresses the Sommerfeld phenomena and helps pass through resonance if the asymmetry is small. However, it is observed that the opposite effects exist in case of a large asymmetry. It is also found that the effects of external damping on the Sommerfeld phenomena are similar to those of the asymmetry, whereas internal damping has less effects than external damping and the asymmetry. By performing numerical simulations, four types of critical behavior are identified from the viewpoints of the stability and the passage through resonance.