참고문헌
- 강흥규 (2009). 배 개념에 기초한 자연수 곱셈 개념의 지도 방안, 학교수학 11(1), 17-37. (Kang, H. K. (2009). An alternative program for the teaching of multiplication concept based on times idea, School Mathematics 11(1), 17-37.)
- 김경미, 황우형 (2012). 자연수와 분수 연산에 대한 학생들의 이해 분석, 수학교육 51(1), 21-45. (Kim, K. M. & Whang, W. H. (2012). An analysis of students' understanding of operations with whole numbers and fractions, The Mathematical Education 51(1), 21-45.) https://doi.org/10.7468/mathedu.2012.51.1.021
- 김용익 (2009). 비례 상황에 기초한 비의 지도방법 연구. 박사학위논문, 한국교원대학교. (Kim, Y. I. (2009). A study on the teaching method of ratio based on the proportional situation. Doctoral dissertation, Korea National University of Education.)
- 김정원, 방정숙 (2013). 초등학교 3학년 학생들의 곱셈적 사고에 따른 비례 추론 능력 분석, 학교수학 23(1), 1-16. (Kim, J. W., & Pang, J. S. (2013). An analysis on third graders' multiplicative thinking and proportional reasoning ability, School Mathematics 23(1), 1-16.)
- 박희옥, 박만구 (2012). 비와 비율 학습에서 나타나는 초등학교 학생들의 인식론적 장애 분석, 초등수학교육 15(2), 159-170. (Park, H. O., & Park, M. G. (2012). An analysis on the epistemological obstacles of elementary students in the learning of ratio and rate, Elementary Mathematics Education, 15(2), 159-170.)
- 방정숙, 김상화(2007). 초등교사의 수학과 교수법적 내용 지식의 정립을 위한 교수.학습 자료 개발, 한국학교수학회논문집 10(1), 129-148. (Pang, J. S., & Kim, S. H. (2007). Development of teaching and learning materials for elementary school teachers to foster pedagogical content knowledge in mathematics, Journal of the Korean School Mathematics Society 10(1), 129-148.)
- 신준식 (2013). 문제 상황과 연결된 분수 나눗셈의 교과서 내용 구성 방안, 수학교육 52(2), 207-230. (Shin, J. S. (2013). A proposal to the construction of textbook contents of fraction division connected to problem context, The Mathematical Education 52(2), 207-230.) https://doi.org/10.7468/mathedu.2013.52.2.217
- 정은실 (2006). 분수 개념의 의미 분석과 교육적 시사점 탐구, 학교수학 8(2), 123-138. (Jeong, E. S. (2006). An educational analysis on fraction concept, School Mathematics 8(2), 123-138.)
- Baroody, A. J., & Coslick, R. T. (1998). 수학의 힘을 길러주자. 왜? 어떻게? (권성룡 외 11인 공역), 서울:경문사.
- Behr, M. J., Lesh, R., Post, T., & Silver, E. A. (1983). Rational-number concepts. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 92-126). Orlando, FL: Academic Press.
- Charalambous, C. Y., & Pitta-Pantazi, D. (2007). Drawing on theoretical to study students' understandings of fractions., Educational Studies in Mathematics 64(3), 293-316. https://doi.org/10.1007/s10649-006-9036-2
- Clark, F., & Kammi, C. (1996). Identification of multiplicative thinking in children in grades 1-5, Journal of Research in Mathematics Education 27(1), 41-51. https://doi.org/10.2307/749196
- Lamon, S. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework for research. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 629-668). Charlotte, NC: Information Age Publishing and the National Council of Teachers of Mathematics.
- Piaget, J. (1987). Possibility and necessity. Minneapolis, MN: University of Minnesota Press.
- Schwartz, J. (1988). Intensive quantity and referent transforming arithmetic operation. In J. Hiebert & M. Behr (Eds.), Number concepts and operations in the middle grades (Vol. 2) (pp. 41-52). Reston, VA: Lawrence Erlbaum Associates.
- Steffe, L. (1994). Children's multiplying scheme. In G. Harel, & J. Confrey (Eds.), The development of multiplication reasoning in the learning of mathematics (pp. 3-39). Albany, NY: State University of New York Press.
- Streefland, L. (1993). Fraction: A realistic approach. In T. P. Carpenter, E. Fennema, & T. A. Romberg (Eds.), Rational numbers: An integration of research (pp. 289-325). Hillsdale, NJ: Lawrence Erlbaum Associates.
- Vergnaud (1996). The theory of conceptual fields. In L. P. Steffe & P. Nesger (Eds.), Theories of mathematical learning (pp. 219-239). Mahwah, NJ: Lawrence Erlbaum Associates.
- Vergnaud (1998). Multiplicative structure. In J. Hiebert, & M. Behr (Eds.), Number concepts and operations in the middle grades (Vol. 2) (pp. 141-161). Reston, VA: National Council of Teachers of Mathematics.