DOI QR코드

DOI QR Code

Environmentally Associated Spatial Distribution of a Macrozoobenthic Community in the Continental Shelf off the Southern Area of the East Sea, Korea

한국 동해 남부해역 대륙붕에 서식하는 대형저서동물군집 공간분포를 결정하는 환경요인

  • Lee, Jung-Ho (Department of Marine Biotechnology, Anyang University) ;
  • Lee, Jung-Suk (Institute of Environmental Protection and Safety, NeoEnbiz Co.) ;
  • Park, Young-Gyu (Ocean Circulation and Climate Research Division, Korea Institute of Ocean Science and Technology) ;
  • Kang, Seong-Gil (Offshore CCS Research Unit, KRISO, Korea Institute of Ocean Science and Technology) ;
  • Choi, Tae Seob (Institute of Environmental Protection and Safety, NeoEnbiz Co.) ;
  • Gim, Byeong-Mo (Institute of Environmental Protection and Safety, NeoEnbiz Co.) ;
  • Ryu, Jongseong (Department of Marine Biotechnology, Anyang University)
  • 이정호 (안양대학교 해양바이오시스템공학과) ;
  • 이정석 ((주)네오엔비즈 환경안전연구소) ;
  • 박영규 (한국해양과학기술원 해양순환기후연구부) ;
  • 강성길 (한국해양과학기술원 선박해양플랜트연구소 해양CCS사업단) ;
  • 최태섭 ((주)네오엔비즈 환경안전연구소) ;
  • 김병모 ((주)네오엔비즈 환경안전연구소) ;
  • 류종성 (안양대학교 해양바이오시스템공학과)
  • Received : 2014.02.02
  • Accepted : 2014.02.20
  • Published : 2014.02.28

Abstract

This study aims to understand environmental factors that determine spatial distribution of macrozoobenthic community in the southern area (ca 100-500 m depth) of East Sea, Korea, known as a candidate site for carbon storage under the seabed. From sixteen locations sampled in the summer of 2012, a total of 158 species were identified, showing density of $843indiv/m^2$ and biomass of $26.2g\;WW/m^2$, with increasing faunal density towards biologically higher diverse locations. Principal component analysis showed that a total of 33 environmental parameters were reduced to three principal components (PC), indicating sediment, bottom water, and depth, respectively. As sand content was increasing, number of species increased but biomass decreased. Six dominant species including two bivalve species favored high concentrations of ${\Omega}$ aragonite and ${\Omega}$ calcite, indicating that the corresponding species can be severely damaged by ocean acidification or $CO_2$ effluent. Cluaster analysis based on more than 1% density dominant species classified the entire study area into four faunal assemblage (location groups), which were delineated by characteristic species, including (A) Ampelisca miharaensis, (B) Edwardsioides japonica, (C) Maldane cristata, (D) Spiophanes kroeyeri, and clearly separated in terms of geography, bottom water and sediment environment. Overall, a discriminant function model was developed to predict four faunal assemblages from five simply-measured environmental variables (depth, sand content in sediment, temperature, salinity and pH in bottom water) with 100% accuracy, implying that benthic faunal assemablages are closed linked to certain combinations of abiotic factors.

본 연구는 동해 남부 이산화탄소 해저지중저장 후보지 주변 수심 100-500 m 해역에서 저서생태계의 공간분포와 이를 결정하는 환경요인을 이해하기 위해 수행되었다. 2012년 8월-9월 총 16개 정점에서 대형저서동물군집과 환경요인을 조사하였다. 총 158종의 저서동물이 채집되었으며, 평균 서식밀도는 $843indiv/m^2$, 평균 생물량(습중량)은 $26.2g\;WW/m^2$로 나타났으며, 생물다양성이 높은 지역에서 주로 서식밀도가 높았다. 측정된 33개 환경변수를 대상으로 주성분분석을 실시한 결과 조사해역의 저서환경은 크게 퇴적물환경, 저층해수환경, 수심에 의해 지배된다. 저서동물의 분포는 세 가지 주성분과 밀접한 관련을 보였는데, 특히 사질함량이 많은 정점일수록 출현종수가 많아지고 생물량은 적어지는 경향이 관찰되었다. 조개 2종을 포함한 우점종 6종은 ${\Omega}$ aragonite, ${\Omega}$ calcite 농도가 높은 곳을 선호하였는데, 이 종들은 이산화탄소 유입으로 인해 해양산성화가 진행되면 가장 먼저 피해를 입을 수 있는 생물로 판단된다. 저서동물 상위 1% 우점종의 종조성을 바탕으로 집괴분석한 결과 지리적으로 뚜렷하게 구분되는 4개의 정점군이 분류되었다. 각 정점군은 고유의 저층해수 및 퇴적물 환경을 보이고 있으며, 대표적인 특성종으로는 A) Ampelisca miharaensis, (B) Edwardsioides japonica, (C) Maldane cristata, (D) Spiophanes kroeyeri을 들 수 있다. 측정이 용이한 5개의 환경요인(수심, 사질함량, 수온, 염분, pH)을 이용하여 4개의 정점군을 정확도 100%로 예측할 수 있는 판별함수모델을 제시하였다. 조사지역의 저서동물군집은 환경요인과 밀접한 관계를 보이고 있으며, 이는 환경변수에 기반하여 저서동물 분포를 예측할 수 있는 통계적모델 개발 가능성을 시사한다.

Keywords

References

  1. Ahn, I.Y., Y.C. Kang, J.W. Choi, 1995. The influences of industrial effluents on intertidal benthic communities in Panweol, Kyeonggi Bay (Yellow Sea) on the coast of Korea. Mar. Pollut. Bull., 30:200−206. https://doi.org/10.1016/0025-326X(94)00125-S
  2. Buchanan, J.B., 1984. Sediment analysis. In: Methods for the study of marine benthos, edited by Holme, N.A. and A.D. McIntyre, Blackwell Scientific Publications, Oxford and Edinburgh, pp. 41−65.
  3. Blanchet, H., N. Lavesque, T. Ruellet, J.C. Dauvin, P.G. Sauriau, N. Desroy, C. Desclaux, M. Leconte, G. Bachelet, A.-L. Janson, C. Bessineton, S. Duhamel, J. Jourde, S. Mayot, S. Simon, X. de Montaudouin, 2008. Use of biotic indices in semi-enclosed coastal ecosystems and transitional waters habitats-implications for the implementation of the European Water Frame work Directive. Ecol. Indicators, 8: 360−372. https://doi.org/10.1016/j.ecolind.2007.04.003
  4. Choi, J.-W., C.-H. Koh, 1986. The distribution and feeding characteristics of some dominant polychaetes in the continental shelf of the East Sea, Korea. J. Oceanol. Soc. Korea, 21: 236−244.
  5. Choi, J.-W., C.-H. Koh, 1988. The Polychaete assemblages on the continental shelf off the southeastern coast of Korea. J. Oceanol. Soc. Korea, 23: 169−183.
  6. Choi, J.-W., C.-H. Koh, 1989. Polychaete feeding guilds from the continental shelf off the southeastern coast of Korea. J. Oceanol. Soc. Korea, 24: 84−95.
  7. Choi, J.-W., C.-H. Koh, 1990. Distiribution pattern of polychaete worms on the continental shelf and slope of the East Sea (Southwestern Sea of Japan), Korea. J. Oceanol. Soc. Korea, 25: 36−48.
  8. Choi, J.-W., S. Hyun, D. Kim, W.-S. Kim, 2002. Macrobenthic faunal assemblages on the soft-bottoms around Dokdo in the East Sea, Korea. Ocean Polar Res., 24: 429−442. https://doi.org/10.4217/OPR.2002.24.4.429
  9. Clarke, K.R., R.M. Gorley, 2006. PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth.
  10. Doney, S.C., V.J. Fabry, R.A. Feely, J.A. Kleypas, 2009. Ocean acidification: the other $CO_2$ problem. Annu. Rev. Mar. Sci., 1: 169−192. https://doi.org/10.1146/annurev.marine.010908.163834
  11. Dove, M.C., J. Sammut, 2007. Impacts of estuarine acidification on survival and growth of Sydney rock oysters Saccostrea glomerata. J. Shell. Res., 26: 519−527. https://doi.org/10.2983/0730-8000(2007)26[519:IOEAOS]2.0.CO;2
  12. Ellis, J., T. Ysebaert, T. Hume, A. Norkko, T. Bult, P. Herman, S. Thrush, J. Oldman, 2006. Predicting macrofaunal species distributions in estuarine gradients using logistic regression and classification systems. Mar. Ecol. Prog. Ser., 316: 69−83. https://doi.org/10.3354/meps316069
  13. Field, J.G., K.R. Clarke, R.M. Warwick, 1982. A practical strategy for analyzing multispecies distribution patterns. Mar. Ecol. Prog. Ser., 8: 37−52. https://doi.org/10.3354/meps008037
  14. Gogina, M., M. Glockzin, M.L. Zettler, 2010. Distribution of benthic macrofaunal communities in the western Baltic Sea with regard to near-bottom environmental parameters. 2. Modelling and prediction. J. Mar. Syst., 80: 57−70. https://doi.org/10.1016/j.jmarsys.2009.10.001
  15. Gray, J.S., 1974. Animal-sediment relationships. Oceanogr. Mar. Biol. Ann. Rev., 12: 223−262.
  16. Green, M.A., G.G. Waldbusser, S.L. Reilly, K. Emerson, S. O'Donnell, 2009. Death by dissolution: sediment saturation state as a mortality factor for juvenile bivalves. Limnol. Oceangr., 54: 1037−1047. https://doi.org/10.4319/lo.2009.54.4.1037
  17. Kelly, R.P., M.M. Foley, W.S. Fisher, R.A. Feely, B.S. Halpern, G.G. Waldbusser, M.R. Caldwell, 2011. Mitigating local causes of ocean acidification with existing laws. Science, 332: 1036−1037. https://doi.org/10.1126/science.1203815
  18. Lim, H.-S., J.-W. Choi, S.-D. Choi, 2012. Spatial distribution of macrobenthos in Sueocheon stream estuary at the northern part of Gwangyang Bay, Korea. The Sea (J. Kor. Soc. Oceanogr.), 17:76−86.
  19. Messiner, K., A. Darr, E. Rachor, 2008. Development of habitat models for Nephtys species (Polychaeta: Nephtyidae) in the German Bight. J. Sea Res., 60: 276−291. https://doi.org/10.1016/j.seares.2008.08.001
  20. Miller, A.W., A.C. Reynolds, C. Sorbino, G.F. Riedel, 2009. Shellfish face uncertain future in high $CO_2$ world: influence of acidification on oyster larvae calcification and growth in estuaries. PLoS Biology, 4: e5661.
  21. Muxika, I., A. Borja, J. Bald, 2007. Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive. Mar. Pollut. Bull., 55: 16−29. https://doi.org/10.1016/j.marpolbul.2006.05.025
  22. Paik, S.-G., R.-S. Kang, J.O. Jeon, J.-H. Lee, S.G. Yun, 2007. Distribution patterns of sandy bottom macrobenthic community on the Hupo coastal area, in the East Sea of Korea. Ocean Polar Res., 23: 123−134.
  23. Paul, J., K.J. Scott, D.E. Campbell, J.H. Gentile, C.S. Strobel, R.M. Valente, S.B. Weisberg, A.F. Holland, J.A., Ranasinghe, 2001. Developing and applying a benthic index of estuarine condition for the Virginian Biogeographic Province. Ecol. Indicators, 1: 83−99. https://doi.org/10.1016/S1470-160X(01)00010-3
  24. Pearson, T.H., R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev., 16: 229−311.
  25. Rakocinski, C.F., S.S. Brown, G.R. Gaston, R.W. Heard, W.W. Walker, J.K. Summers, 2000. Species-abundance-biomass responses by estuarine macrobenthos to sediment chemical contamination. J Aqua. Ecosyst. Stress Recov., 7: 201−214. https://doi.org/10.1023/A:1009931721009
  26. Reiss, H., I. Kroncke, 2005. Seasonal variability of benthic indices: an approach to test the applicability of different indices for ecosystem quality assessment. Mar. Pollut. Bull., 50: 1490−1499. https://doi.org/10.1016/j.marpolbul.2005.06.017
  27. Ryu, J., J.S. Khim, S.-G. Kang, D. Kang, C.-H. Lee, C.-H. Koh, 2011a. The impact of heavy metal pollution gradients in sediments on benthic macrofauna at population and community levels. Environ. Pollut., 159: 2622−2629. https://doi.org/10.1016/j.envpol.2011.05.034
  28. Ryu, J., H.-C. Kim, J.S. Khim, Y.H. Kim, J. Park, D. Kang, J.H. Hwang, C.-H. Lee, C.-H. Koh, 2011b. Prediction of macrozoobenthic species distribution in the Korean Saemangeum tidal flat based on a logistic regression model of environmental parameters. Ecol. Res., 26: 659−668. https://doi.org/10.1007/s11284-011-0826-3
  29. Ryu, J., J.S. Khim, J.-W. Choi, H.C. Shin, S. An, J. Park, D. Kang, C.-H. Lee, C.-H. Koh, 2011c. Environmentally associated spatial changes of a macrozoobenthic community in the Saemangeum tidal flat, Korea. J. Sea Res., 65: 390−400. https://doi.org/10.1016/j.seares.2011.03.003
  30. Salzwedel, H, E. Rachor, D. Gerdes, 1985. Benthic macrofauna communities in the German Bight. Veroff. Inst. Meeresforsch. Bremerh., 20: 199−267.
  31. Shin, H.C., S.M. Yoon, C.H. Koh, 2001. Spatial distribution of benthic macrofaunal community in Ulsan Bay and Onsan Bay, eastern coast of Korea. J. Kor. Soc. Oceaogr., 6: 180−189.
  32. Simboura, N., A. Zenetos, P. Panayotidis, A. Makra, 1995. Changes of benthic community structure along an environmental gradient. Mar. Pollut. Bull., 30: 470−474. https://doi.org/10.1016/0025-326X(95)00237-H
  33. Somerfield, P.J., J.M. Gee, R.M. Warwick, 1994. Benthic community structure in relation to an instantaneous discharge of waste water from a tin mine. Mar. Pollut. Bull., 28: 363−369. https://doi.org/10.1016/0025-326X(94)90273-9
  34. Snelgrove, P.R.V., C.A. Butman, 1994. Animal-sediment relationships revisited: cause versus effect. Oceanogr. Mar. Biol. Ann. Rev., 32: 111−177.
  35. Thrush, S.F., J.E. Hewitt, A. Norkko, P.E. Nicholls, G.A. Funnell, J.I. Ellis, 2003. Habitat change in estuaries: predicting broad-scale responses of intertidal macrofauna to sediment mud content. Mar. Ecol. Prog. Ser., 263: 101−112. https://doi.org/10.3354/meps263101
  36. Warwick, R.M., H.M. Platt, K.R. Clarke, J. Agard, J. Gobin, 1990. Analysis of macrobenthic and meiobenthic community structure in relation to pollution and disturbance in Hamilton Harbor, Bermuda. J. Exp. Mar. Biol. Ecol., 139: 119−142. https://doi.org/10.1016/0022-0981(90)90042-B
  37. Waldbusser, G.G., E.R. Voigt, H. Bergschneider, M.A. Green, R.I.E. Newell, 2011. Biocalcification in the eastern oyster (Crassostrea virginica) in relation to long-term trends in Chesapeake Bay pH. Estuaries Coasts, 34: 221−231. https://doi.org/10.1007/s12237-010-9307-0
  38. Weston, D.P., 1988. Macrobenthos-sediment relationships on the continental shelf off Cape Hatteras, North Carolina. Cont. Shelf Res., 8: 267−286. https://doi.org/10.1016/0278-4343(88)90033-7
  39. Weston, D.P., 1990. Quantitative examination of macrobenthic community changes along an organic enrichment gradient. Mar. Ecol. Prog. Ser., 61: 233−244. https://doi.org/10.3354/meps061233
  40. Ysebaert, T., P. Meire, P.M. Herman, H. Verbeek, 2002. Macrobenthic species response surfaces along estuarine gradients: prediction by logistic regression. Mar. Ecol. Prog. Ser., 225: 79−95. https://doi.org/10.3354/meps225079
  41. Zar, J.H., 1984. Biostatistical analysis. Prentice-Hall, Englewood Cliffs, New Jersey.

Cited by

  1. Long-term Spatio-temporal Distributions of Subtidal Macrozoobenthos Community in the Outside of Saemangeum Dike vol.24, pp.1, 2014, https://doi.org/10.7846/jkosmee.2021.24.1.47