DOI QR코드

DOI QR Code

Numerical Study on the Characteristics of High PM2.5 Episodes in Anmyeondo Area in 2009

2009년 안면도 지역 고농도 PM2.5 특성에 관한 수치 연구

  • Jeon, Won-Bae (Institute of Environment Studies, Pusan National University) ;
  • Lee, Hwa Woon (Division of Earth Environmental System, Pusan National University) ;
  • Lee, Soon-Hwan (Department of Earth Science Education, Pusan National University) ;
  • Park, Jae-Hyeong (Division of Earth Environmental System, Pusan National University) ;
  • Kim, Hyun-Goo (Korea Institute of Energy Research)
  • 전원배 (부산대학교 환경연구원) ;
  • 이화운 (부산대학교 지구환경시스템학부) ;
  • 이순환 (부산대학교 지구과학교육과) ;
  • 박재형 (부산대학교 지구환경시스템학부) ;
  • 김현구 (한국에너지기술연구원)
  • Received : 2013.09.17
  • Accepted : 2013.10.28
  • Published : 2014.02.28

Abstract

This paper investigates the characteristics of high $PM_{2.5}$ episodes occurred at Anmyeondo area in spring time, 2009. The monthly mean $PM_{2.5}$ concentration during April was the highest in the year and especially, high levels of $PM_{2.5}$ exceeding standard regulation level were sustained consecutively during 5 to 13 April. To analyze more detailed $PM_{2.5}$ characteristics, numerical simulations were carried out using CMAQ(Community Multi-scale Air Quality) with IPR(Integrated Process Rate) and DDM-3D(Decoupled Direct Method). $PM_{2.5}$ level was lower in daytime than that in nighttime due to vigorous vertical mixing during daytime. The chemical composition was showed that ratio of primary ion components such as sulfate($SO_4{^{2-}}$), nitrate($NO_3{^-}$) and ammonium($NH_4{^+}$) were nearly half of total amount of $PM_{2.5}$. Aerosol and transport process dominantly contributed to $PM_{2.5}$ concentration in Anmyeondo area and contribution rate of local emissions was nearly zero since Anmyeondo area has rare anthropogenic PM emission sources. DDM-3D analysis result showed that $PM_{2.5}$ in Anmyeondo area was influenced by emissions from Shanghai and Shandong region of China.

Keywords

References

  1. Baek, S. O., Heo, Y. K., Park, Y. H., 2008, Characterization of concentrations of fine particulate matter in the atmosphere of Pohang area, J. Korean Soc. Environ. Eng., 30(3), 302-313.
  2. Dockery, D. W., Stone, P. H., 2007, Cardiovascular risks from fine particulate air pollution, N. Engl. J. Med., 356, 511-513. https://doi.org/10.1056/NEJMe068274
  3. Harrison, R. M., Laxen, D., Moorcroft, S., Laxen, K., 2012, Processes affecting concentrations of fine particulate matter ($PM_{2.5}$) in the UK atmosphere, Atmos. Env., 46, 115-124. https://doi.org/10.1016/j.atmosenv.2011.10.028
  4. Hwang, G. Y., Lee, M. H., Shin, B. C., Lee, G. W., Lee, J. H., Shin, J. S., 2008, Mass concentration and ionic composition of $PM_{2.5}$ observed at Ieodo ocean research station, J. Korean Soc. Atmos. Environ., 24(5), 501-511. https://doi.org/10.5572/KOSAE.2008.24.5.501
  5. Jiang, F., Liu, Q., Huang, X., Wang, T., Zhuang, B., Xie, M., 2012, Regional modeling of secondary organic aerosol over China using WRF/Chem, J. Aerosol Sci., 43(1), 57-73. https://doi.org/10.1016/j.jaerosci.2011.09.003
  6. Kang, B. W., Jeong, M. H., Jeon, J. M., Lee, H. S., 2011, The characteristics of $PM_{2.5}$ and acidic air pollutants in the vicinity of industrial complexes in Gwangyang, J. Korean Soc. Atmos. Environ., 27(1), 16-29. https://doi.org/10.5572/KOSAE.2011.27.1.016
  7. Lee, P. K., Brook, J. R., Dabek-Zlotorzynska, E., Mabury, S. A., 2003, Identification of the major sources contributing to $PM_{2.5}$ observed in Toronto, Environ. Sci. Technol., 37(21), 4831-4840. https://doi.org/10.1021/es026473i
  8. Lee, S. H., Kang, B. W., Yeon, I. J, Choi, J. R., Park, H. P., Park, S. C., Lee, H. S., Cho, B. Y., 2012, Analysis of $PM_{2.5}$ case study burden at Chungju city, J. Korean Soc. Atmos. Environ., 28(5), 595-605. https://doi.org/10.5572/KOSAE.2012.28.5.595
  9. Moon, K. J., Park, S. M., Park, J. S., Song, I. H., Jang, S. K., Kim, J. C., Lee, S. J., 2011, Chemical characteristics and source apportionment of $PM_{2.5}$ in Seoul metropolitan area in 2010, J. Korean Soc. Atmos. Environ., 27(6), 711-722. https://doi.org/10.5572/KOSAE.2011.27.6.711
  10. Mueller, S. F., Mallard, J. W., 2011, Contributions of natural emissions to ozone and $PM_{2.5}$ as simulated by the Community Multiscale Air Quality (CMAQ) model, Environ. Sci. Technol, 45(11), 4817-4823. https://doi.org/10.1021/es103645m
  11. Ritter, M., Muller, M. D., Tsai, M. Y., Parlow, E., 2013, Air pollution modeling over very complex terrain: An evaluation of WRF-Chem over Switzerland for two 1-year periods, Atmos. Res., 209-222.
  12. Seinfeld, J. H., Pandis, S. N., 2006, Atmospheric chemistry and physics, 2nd Ed., John Wiley & Sons Inc, New York, 55-62.
  13. Subramoney, P., Karnae, S., Farooqui, Z., John, K., Gupta, A. K., 2013, Identification of $PM_{2.5}$ sources affecting a semi-arid coastal region using a chemical mass balance model, Aerosol Air Qual. Res., 13, 60-71.
  14. Vaidyanathan, A., Dimmick, W. F., Kegler, S. R., Qualters, J. R., 2013, Statistical air quality predictions for public health surveillance: evaluation and generation of county level metrics of $PM_{2.5}$ for the environmental public health tracking network, Int. J. Health Geogr., 12(1), 1-13. https://doi.org/10.1186/1476-072X-12-1

Cited by

  1. Simulation of Air Quality Over South Korea Using the WRF-Chem Model: Impacts of Chemical Initial and Lateral Boundary Conditions vol.25, pp.4, 2015, https://doi.org/10.14191/Atmos.2015.25.4.639