References
- Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration chatacteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
- Belytschko, T., Liu, W.K. and Moran, B. (2000), Nonlinear Finite Elements for Continua and Structures, John Wiley & Sons, Chichester, USA.
- Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60(5), 195-216. https://doi.org/10.1115/1.2777164
- Chakraborty, A., Gopalakrishnan, S. and Reddy, J.R. (2003), "A new beam finite element for the analysis of functionally graded materials", Int. J. Mech. Sci., 45(3), 519-539. https://doi.org/10.1016/S0020-7403(03)00058-4
- Cichon, C. (1984), "Large displacement in-plane analysis of elastic-plastic frames", Comput. Struct., 19(5- 6), 737-745. https://doi.org/10.1016/0045-7949(84)90173-1
- Crisfield, M.A. (1981), "A fast incremental/iterative solution procedure that handles 'snap-through'", Comput. Struct., 13(1-3), 55-62. https://doi.org/10.1016/0045-7949(81)90108-5
- Crisfield, M.A. (1991), Nonlinear Finite Element Analysis of Solids and Structures, Volume 1, Essentials, John Wiley & Sons, Chichester, USA.
- Fallah, A. and Aghdam, M.M. (2011), "Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation", Eur. J. Mech. A/Solids, 30(4), 571-583. https://doi.org/10.1016/j.euromechsol.2011.01.005
- Gere, G.M. and Timoshenko, S.P. (1991), Mechanics of Materials, Third SI Edition, Chapman & Hall, London, UK.
- Hsiao, K.M. and Huo, F.Y. (1987), "Nonlinear finite element analysis of elastic frames", Comput. Struct., 26(4), 693-701. https://doi.org/10.1016/0045-7949(87)90016-2
- Hsiao, K.M., Huo, F.Y. and Spiliopoulos, K.V. (1988), "Large displacement analysis of elasto-plastic frames", Comput. Struct., 28(5), 627-633. https://doi.org/10.1016/0045-7949(88)90007-7
- Huang, Y. and Li, X.F. (2011), "Buckling analysis of non-uniform and axially graded beams with varying flexural rigidity", ASCE J. Eng. Mech., 137(1), 73-81. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000206
- Jafari, V., Vahdani, S.H. and Rahimian, M. (2010), "Derivation of the consistent flexibility matrix for geometrically nonlinear Timoshenko frame finite element", Finite Elem. Anal. Des., 46(12), 1077-1085. https://doi.org/10.1016/j.finel.2010.07.015
- Kadoli, R., Akhtar, K. and Ganesan, N. (2008), "Static analysis of functionally graded beams using higher order shear deformation beam theory", Appl. Math. Model., 32(12), 2509-2525. https://doi.org/10.1016/j.apm.2007.09.015
- Kang, Y.A. and Li, X.F. (2009), "Bending of functionally graded cantilever beam with power-law nonlinearity subjected to an end force", Int. J. Nonlin. Mech., 44(6), 696-703. https://doi.org/10.1016/j.ijnonlinmec.2009.02.016
- Kang, Y.A. and Li, X.F. (2010), "Large deflection of a nonlinear cantilever functionally graded beam", J. Reinf. Plast. Comp., 29(4), 1761-1774. https://doi.org/10.1177/0731684409103340
- Kocaturk, T. and Akbas, S.D. (2012), "Post-buckling analysis of Timoshenko beams made of functionally graded material under thermal loading", Struct. Eng. Mech., 41(6), 775-789. https://doi.org/10.12989/sem.2012.41.6.775
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B Eng., 28(1-2), 1-4.
- Lee, Y.Y., Zhao, X. and Reddy, J.N. (2010), "Postbuckling analysis of functionally graded plates subjected to compressive and thermal loads", Comput. Meth. Appl. Mech. Eng., 199(25-28), 1645-1653. https://doi.org/10.1016/j.cma.2010.01.008
- Mattiasson, K. (1981), "Numerical results for large deflection beam and frame problems analyzed by meams of elliptic integrals", Int. J. Numer. Eng., 17(1), 145-153. https://doi.org/10.1002/nme.1620170113
- Meek, J.L. and Xue, Q. (1996), "A study on the instability problem for 2D-frames", Comput. Meth. Appl. Mech. Eng., 136(3-4), 347-361. https://doi.org/10.1016/0045-7825(96)00995-4
- Nanakorn, P. and Vu, L.N. (2006), "A 2D field-consistent beam element for large displacement analysis using the total Lagrangian formulation", Finite Elem. Anal. Des., 42(14), 1240-1247. https://doi.org/10.1016/j.finel.2006.06.002
- Nguyen, D.K. (2004), "Post-buckling behavior of beam on two-parameter elastic foundation", Int. J. Struct. Stab. Dyn., 4(1), 21-43. https://doi.org/10.1142/S0219455404001082
- Nguyen, D.K. (2012), "A Timoshenko beam element for large displacement analysis of planar beams and frames", Int. J. Struct. Stab. Dyn., 12(6), 1-9. https://doi.org/10.1142/S0219455412004628
- Pacoste, C. and Eriksson, A. (1997), "Beam elements in instability problems", Comput. Methods Appl. Mech. Eng., 144(1-2), 163-197. https://doi.org/10.1016/S0045-7825(96)01165-6
- Praveen, G.N. and Reddy, J.N. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", Int. J. Solids Struct., 35(33), 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9
- Shahba, A., Attarnejad, R., Marvi, M.T. and Hajila, S. (2011), "Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions", Compos. Part B Eng., 42(4), 801-808.
- Simsek, M. and Kocatürk, T. (2009), "Free and forced vibration of a functionally graded beam subjected to a concentrated moving harmonic load", Compos. Struct., 90(4), 465-473. https://doi.org/10.1016/j.compstruct.2009.04.024
- Singh, K.V. and Li, G. (2009), "Buckling of functionally graded and elastically restrained nonuniform column", Compos. Part B Eng., 40(5), 393-403. https://doi.org/10.1016/j.compositesb.2009.03.001
- Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-Hill, New York, USA.
Cited by
- Post-buckling Behaviour of Axially FGM Planar Beams and Frames vol.171, 2017, https://doi.org/10.1016/j.proeng.2017.01.321
- Beam finite element for modal analysis of FGM structures vol.121, 2016, https://doi.org/10.1016/j.engstruct.2016.04.042
- A Corotational Formulation for Large Displacement Analysis of Functionally Graded Sandwich Beam and Frame Structures vol.2016, 2016, https://doi.org/10.1155/2016/5698351
- Dynamic response of non-uniform Timoshenko beams made of axially FGM subjected to multiple moving point loads vol.53, pp.5, 2015, https://doi.org/10.12989/sem.2015.53.5.981
- Post-buckling responses of elastoplastic FGM beams on nonlinear elastic foundation vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.515
- Effects of Support Conditions to the Post-Buckling Behaviors of Axially Functionally Graded Material Rods vol.730, 2017, https://doi.org/10.4028/www.scientific.net/KEM.730.502
- Postbuckling Analysis of Functionally Graded Beams vol.473, pp.1757-899X, 2019, https://doi.org/10.1088/1757-899X/473/1/012028
- Post-buckling responses of functionally graded beams with porosities vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.579
- Rotating effects on hygro-mechanical vibration analysis of FG beams based on Euler-Bernoulli beam theory vol.63, pp.4, 2014, https://doi.org/10.12989/sem.2017.63.4.471
- Nonlinear static analysis of functionally graded porous beams under thermal effect vol.6, pp.4, 2017, https://doi.org/10.12989/csm.2017.6.4.399
- Geometrically nonlinear analysis of functionally graded porous beams vol.27, pp.1, 2014, https://doi.org/10.12989/was.2018.27.1.059
- Nonlinear Static Bending and Free Vibration Analysis of Bidirectional Functionally Graded Material Plates vol.2020, pp.None, 2014, https://doi.org/10.1155/2020/8831366
- An efficient curved beam element for thermo-mechanical nonlinear analysis of functionally graded porous beams vol.28, pp.None, 2014, https://doi.org/10.1016/j.istruc.2020.08.038