DOI QR코드

DOI QR Code

Characteristics of Radioactive Aerosol Particles in Nuclear Power Plant Containments

원자로건물 내부 방사성 에어로졸 입자의 특성

  • Kim, Min Young (Department of Environmental Engineering, Sunchon National University) ;
  • Park, Sung Hoon (Department of Environmental Engineering, Sunchon National University)
  • 김민영 (순천대학교 환경공학과) ;
  • 박성훈 (순천대학교 환경공학과)
  • Received : 2014.11.22
  • Accepted : 2014.12.08
  • Published : 2014.12.30

Abstract

Prediction of the behavior of radioactive aerosol particles in a containment is of importance for the assessment of the consequences of nuclear power plant severe accidents because most radioactive air pollutants are emitted as aerosol particles upon severe accident. The performance of engineering safety features (ESFs) is also influenced by the characteristics of the aerosol particles. In this article, the characteristics of aerosol particles in reactor containments reported by previous studies were reviewed. The results of the experiments for postulated accidents in test reactors, for aerosol behavior analysis using artificial test aerosols, and for ESF performance evaluation were summarized. The summary of this article will be of use in designing and performance-evaluating ESFs.

문헌조사를 통해 그동안 선행연구로부터 밝혀진 방사성 에어로졸의 특성을 종합하고 정리하였다. 가상사고 실험 중 각재계통 및 원자로건물에서 측정한 에어로졸의 특성, 냉각재계통 및 원자로건물에서의 방사성 에어로졸 거동 해석을 위해 사용된 모델 에어로졸의 특성, 공학적 안전설비 성능평가를 위한 실험에 사용된 모델 에어로졸의 특성 등과 관련한 선행연구 내용을 종합해 볼 때, 원전사고 시 발생하는 에어로졸의 MMD는 $0.1{\sim}5{\mu}m$, GSD는 1.33~2.9, 에어로졸 농도는 $0.06{\sim}132g/m^3$의 범위를 보였다. 향후 공학적 안전설비의 설계를 위한 MMD와 GSD의 대표값은 대략 $1.5{\mu}m$와 1.8 내외라고 할 수 있으며, 에어로졸 농도는 대략 $10g/m^3$을 대표값으로 볼 수 있다.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)

References

  1. Adams, R. (1983). Behaviour of U3O8, Fe2O3, and concrete aerosols in a condensing steam environment, Proc. Int'l. Mtg. On LWR Severe Accident Evaluation, Cambridge, MA.
  2. Allelein, H.-J., Neu, K., Van Dorsselaere, J. P., Mueller, K., Kostka, P., Barnak, M., Matejovic, P., Bujan, A., and Slaby, J. (2003). European validation of the integral code ASTEC (EVITA), Nuclear Engineering and Design 221, 95-118. https://doi.org/10.1016/S0029-5493(02)00346-1
  3. Allelein, H.-J., Auvinen, A., Ball, J., Guentay, S., Herranz, L. E., Hidaka, A., Jones, A. V., Kissane, M., Powers, D., and Weber, G. (2009). State-of-the-art report on nuclear aerosols, NEA/CSNI Report NEA/CSNI/R(2009)5.
  4. Allen, M. D., Moss, O. R., and Briant, J. K. (1979). Dynamic shape factors for LMFBR mixed-oxide fuel aggregates, Journal of Aerosol Science, 10, 43-48. https://doi.org/10.1016/0021-8502(79)90134-4
  5. Birchley, J., Haste, T., Bruchertseifer, H., Cripps, R., Guntay, S., and Jackel, B. (2005). Phebus-FP: Results and significance for plant safety in Switzerland, Nuclear Engineering and Design 235, 1607-1633. https://doi.org/10.1016/j.nucengdes.2005.02.018
  6. Bloom, G. R., Hilliard, R. K., McCormack, J. D., and Muhlestein, L. D., (1986). Aerosol behaviour under LWR containment bypass conditions - Results of tests CB-1, CB-2, and CB-3 LACE TR-001, Westinghouse Hanford Company, Richland, WA.
  7. Brockmann, J. E. (1985). Range of possible dynamic and collision shape factors, Appendix F, In Uncertainty in radionuclide release under specific LWR accident conditions (Lipinski, R. J. et al.), Volume II TMLB Analyses SAND84-0410, Sandia National Laboratories, Albuquerque, NM.
  8. Burson, S. B., Bradley, D., Brockmann, J., Copus, E., Powers, D., Greene, G., and Alexander, C., (1989). United States Nuclear Regulatory Commission Research Program on molten core debris interactions in the reactor cavity, Nuclear Engineering and Design, 115, 305-313. https://doi.org/10.1016/0029-5493(89)90055-1
  9. Castelo, A. de los R., Capitao, J. A., and De Santi, G., (1999). International Standard Problem 40: Aerosol deposition and resuspension, Final Comparison Report, NEA/CSNI/R(99)4.
  10. Clement, B., Hanniet-Girault, N., Repetto, G., Jacquemain, D., Jones, A. V., Kissane, M. P., and von der Hardt, P. (2003). LWR severe accident simulation: Synthesis of the results and interpretation of the first PHEBUS FP experiment FPT0. Nuclear Engineering and Design, 226, 5-82. https://doi.org/10.1016/S0029-5493(03)00157-2
  11. Dehbi, A., Suckow, D., and Guentay, S., (2001). Aerosol retention in low-subcooling pools under realistic accident conditions, Nuclear Engineering and Design, 203, 229-241. https://doi.org/10.1016/S0029-5493(00)00343-5
  12. Dickinson, D. R., Hilliard, R. K., Muhlestein, L. D., Mecham, D. C., and Carraro, G. (1987). Aerosol Behaviour in LWR Containment Bypass Piping - Results of LACE Test LA3 LACE TR-011.
  13. Dilara, P., Krasenbrink, A., Hummel, R., and Capitao, J. A. (1998), STORM test SR-09: Deposition of $SnO_2$ in partially insulated pipes with steam and resuspension of $SnO_2$ from partially insulated pipes with $N_2$, Quick Look Report, Technical Note, Joint Research Centre, Ispra (Italy).
  14. Dubourg, R., Faure-Geors, H., Nicaise, G., and Barrachin, M. (2005). Fission product release in the first two PHEBUS tests FPT0 and FPT1, Nuclear Engineering and Design 235, 2183-2208. https://doi.org/10.1016/j.nucengdes.2005.03.007
  15. Ducret, D., Billarand, Y., Roblot, D., and Vendel, J. (1996). Study on collection efficiency of fission products by spray: Experimental device and modelling 24th DOE/NRC Nuclear Air Cleaning and Treatment Conference, Portland, USA, 15-18 July 1996, NUREG/CP-0153.2.
  16. Fink, J. K., Thompson, D. H., Spencer, B. W., and Sehgal, B. R. (1992a). Aerosols released during large-scale integral MCCI tests in the ACE program, Technical Report, Argonne National Lab., Argonne, IL.
  17. Fink, J. K., Corradini, M., Hidaka, A., Hontanon, E., Mignanelli, M. A., Schrodl, E., and Strizhov, V. (1992b). Results of aerosol code comparisons with releases from ACE MCCI tests, Technical Report, Argonne National Lab., Argonne, IL..
  18. Fink, J. K., Thompson, D. H., Spencer, B. W., and Sehgal, B. R. (1995). Aerosol and melt chemistry in the ACE molten core-concrete interaction experiments. High Temperature and Materials Science, 33, 51-76.
  19. Firnhaber, M., Kanzleiter, T. F., Schwarz, S., and Weber, G. (1996). International Standard Problem ISP-37 VANAM M3 - A multi compartment aerosol depletion test with hygroscopic aerosol material, NEA/CSNI/R(96)26.
  20. Froeschke, S., Kohler, S., Weber, A. P., and Kasper, G. (2003). Impact fragmentation of nanoparticle agglomerates, Journal of Aerosol Science, 34, 275-287. https://doi.org/10.1016/S0021-8502(02)00185-4
  21. Haste, T., Payot, F., Dominguez, C., March, P., Simondi-Teisseire, B., and Steinbruck, M. (2012). Study of boron behaviour in the primary circuit of water reactors under severe accident conditions: A comparison of Phebus FPT3 results with other recent integral and separate-effects data, Nuclear Engineering and Design 246, 147-156. https://doi.org/10.1016/j.nucengdes.2011.08.031
  22. Haste, T., Payot, F., Manenc, C., Clement, B., March, P., Simondi-Teisseire, B., and Zeyen, R. (2013). Phebus FPT3: Overview of main results concerning the behaviour of fission products and structural materials in the containment, Nuclear Engineering and Design, 261, 333-345. https://doi.org/10.1016/j.nucengdes.2012.09.034
  23. Hidaka, A., Igarashi, M., Hashimoto, K., Sato, H., Yoshino, T. and Sugimoto, J. (1995). Experimental and analytical study on the behaviour of cesium iodide aerosol/vapor deposition onto inner surface of pipe wall under severe accident conditions, Journal of Nuclear Science and Technology, 32, 1047-1053. https://doi.org/10.1080/18811248.1995.9731813
  24. Hidaka, A., Maruyama, Y., Igarashi, M., Hashimoto, K., and Sugimoto, J. (2000). Experimental and analytical study on aerosol behaviour in WIND project, Nuclear Engineering and Design, 200, 303-315. https://doi.org/10.1016/S0029-5493(99)00328-3
  25. Hilliard, R. K., Muhlestein, L. D., and Albiol, T. J. (1987). Final report of experimental results of LACE test LA2 - Failure to isolate containment LA-TR-007, Westinghouse Hanford Company, Richland, WA.
  26. Hinds, W. C. (1999). Aerosol technology: Properties, behavior, and measurement of airborne particles (2nd ed.), New York, John Wiley & Sons.
  27. Jacquemain, D., Bourdon, S., De Bremaecker, A., and Barrachin, M. (2000). FPT1 final report - IRSN report, IPSN PH-PF IP/00/479.
  28. Johnson, D. L., and Cutler, I. B. (1963). Diffusion sintering: I, Initial stage sintering models and their application to shrinkage of powder compacts, Journal of the American Ceramic Society, 46, 541-545. https://doi.org/10.1111/j.1151-2916.1963.tb14606.x
  29. Jokiniemi, J. (1990). Effect of selected binary and mixed solutions on steam condensation and aerosol behaviour in containment, Aerosol Science and Technology, 12, 891-902. https://doi.org/10.1080/02786829008959401
  30. Kanzleiter, T. (1995). Versuche zum Verhalten von Kernschmelzunfall-Aerosolen in einer Mehrraum-Containment-Geometrie ("VANAM-Versuche") Battelle-Institut e.V., Frankfurt am Main Abschlussbericht BIeV-R67.098-01.
  31. Kissane, M. P., and Drosik, I. (2006). Interpretation of fission-product transport behaviour in the Phebus FPT0 and FPT1 tests, Nuclear Engineering and Design, 236, 1210-1223. https://doi.org/10.1016/j.nucengdes.2005.10.012
  32. Kolditz, J. (1995). GKN I and GKN II: Reactor containment pressure relief and measures against hydrogen energy release in case of severe accidents, Nuclear Engineering and Design, 157, 299-310. https://doi.org/10.1016/0029-5493(95)00999-S
  33. Kops, J., Dibbets, G., Hermans, L., and Van de Vate, J. F. (1975). The aerodynamic diameter of branched chain-like aggregates, Journal of Aerosol Science, 6, 329-333. https://doi.org/10.1016/0021-8502(75)90021-X
  34. Leveque, J. P., and Boulaud, D. (1994). Fission product aerosols in the programmes HEVA and VERCORS, Journal of Aerosol Science, 25, S87-S88. https://doi.org/10.1016/0021-8502(94)90274-7
  35. Liljenzin, J. O., Collen, J., Schock, W., and Rahn, F. J. (1990). Report from the MARVIKEN-V/DEMONA/LACE Workshop, Proceedings of the OECD/NEA Workshop on Aerosol Behaviour and Thermal-Hydraulics in the Containment, Fontenay-aux-Roses (France), CSNI Report No. 176.
  36. Livolant, M. (1995). Severe accidents: The contribution from the Phebus FP programme. FISA-95. Luxembourg.
  37. Jokiniemi, J. K., Maekynen, J. M., Kauppinen, E. I., Tuomisto, H., and Hongisto, O. (1995). LWR containment aerosol experiments at VICTORIA facility, Journal of Aerosol Science, 26, S713-S714. https://doi.org/10.1016/0021-8502(95)97264-F
  38. Maekynen, J., Jokiniemi, J., Ahonen, P., Kauppinen, E., Tuomisto, H., and Routamo, T. (1996). Experimental studies on LWR containment aerosol behaviour at VICTORIA facility, Journal of Aerosol Science, 27, S469-S470. https://doi.org/10.1016/0021-8502(96)00307-2
  39. Maekynen, J. M., Jokiniemi, J. K., Ahonen, P. P., Kauppinen, E., and Zilliacus, R. (1997a). AHMED experiments on hygroscopic and inert aerosol behaviour in LWR containment conditions: Experimental results, Nuclear Engineering and Design, 178, 45-59. https://doi.org/10.1016/S0029-5493(97)00174-X
  40. Maekynen, J. M., Jokiniemi, J. K., Kauppinen, E. I., Tuomisto, H., and Routamo, T. (1997b). LWR aerosol experiments at VICTORIA model containment, Journal of Aerosol Science, 28, S715-S716. https://doi.org/10.1016/S0021-8502(96)00466-1
  41. Maekynen, J. M., Jokiniemi, J. K., Kauppinen, E. I., Tuomisto, H., and Routamo, T. (1998). LWR containment aerosol experiments at VICTORIA facility, Final Report, E.C. Report ST-APC(98)-P19.
  42. McCormack, J. D., Hilliard, R. K., and Slgado, J. M. (1987). Final report of experimental results of LATE test LA4 - Late containment failure with overlapping aerosol injection periods, LACE-TR-025.
  43. Merilo, M., and Wall, I. B. (1992). Containment Filtration Systems Tests, Summary Report, Electric Power Research Institute, ACE Phase A, TR-A22.
  44. Minato, K. (1991). Thermodynamic analysis of cesium and iodine behavior in severe light water reactor accidents, Journal of Nuclear Materials, 185, 154-158. https://doi.org/10.1016/0022-3115(91)90330-A
  45. Mueller, K., Toth, B., Veshunov, M. S., Trambauer, K., Jamond, C., Dubourg, R., Manenc, H., Girault, N., Kissane, M., Repetto, G., Plumecocq, W., Taylor, P., Haste, T., Birchley, J., Bottomley, D., Schanz, G., Stuckert, J., Lemoine, F., Davidovich, N., and Mason, P. (2007). Final interpretation report of the PHEBUS test FPT0 (bundle aspects), European Commission 6th European Framework Programme.
  46. Mulpuru, S. R., Pellow, M. D., Cox, D. S., Hunt, C. E. L., and Barrand, R. D. (1992). Characteristics of radioactive aerosols generated from a hot nuclear fuel sample, Journal of Aerosol Science, 23, S827-S830. https://doi.org/10.1016/0021-8502(92)90539-8
  47. Oxtoby, D. W. (1988). Nonclassical nucleation theory for the gas-liquid transition, Journal of Chemical Physics, 89, 7521-7530. https://doi.org/10.1063/1.455285
  48. Oxtoby, D. W. (1992). Homogeneous nucleation: theory and experiment, Journal of Physics: Condensed Matter, 4, 7627-7650. https://doi.org/10.1088/0953-8984/4/38/001
  49. Park, S. H., and Lee, K. W. (2001). Asymptotic particle size distributions attained during coagulation processes, Journal of Colloid and Interface Science, 233, 117-123. https://doi.org/10.1006/jcis.2000.7222
  50. Payot, F., Haste, T., Biard, B., Bot-Robin, F., Devoy, J., Garnier, Y., Guillot, J., Manenc, C., and March, P., (2011). FPT3 final report, IRSN report DPAM/DIR-2011-206, PHEBUS PF IP/11/589.
  51. Petti, D. A., Martinson, Z. R., Hobbins, R. R., and Osetek, D. J. (1991). Results from the Power Burst Facility severe fuel damage test 1-4: A simulated severe fuel damage accident with irradiated fuel rods and control rods, Nuclear Technology, 94, 313-335. https://doi.org/10.13182/NT91-A15812
  52. Petti, D. A., Hobbins, R. R., and Hagrman, D. L. (1994). The composition of aerosols generated during a severe reactor accident: experimental results from the Power Burst Facility severe fuel damage test 1-4, Nuclear Technology, 105, 334-345. https://doi.org/10.13182/NT94-A34934
  53. Poss, G., and Weber, D. (1997). Versuche zum Verhalten von Kernschmelzaerosolen im LWR-Containment-KAEVER Fachbericht BF-R-67863, Battelle Ingenieurtechnik GmbH.
  54. Rust, H., Taennler, C., Heintz, W., Haschke, D., Nuala, M., and Jakab, R. (1995). Pressure release of containments during severe accidents in Switzerland, Nuclear Engineering and Design, 157, 337-352. https://doi.org/10.1016/0029-5493(95)01015-A
  55. Schock, W. (1987). Comparison of aerosol code calculations with a DEMONA experiment, Nuclear Science and Technology: Water-cooled reactor aerosol code evaluation and uncertainty assessment, E. della Loggia and J. Royen (Ed.), Brussels, Belgium.
  56. Schock, W., Bunz, H., Adams, R. E., Tobias M. L., and Rahn, F. J. (1988). Large-scale experiments on aerosol behaviour in light water reactor containments, Nuclear Technology, 81, 139-157. https://doi.org/10.13182/NT88-A34089
  57. Schwarz, M., Clement, B., and Jones, A. V. (2001). Applicability of Phebus FP results to severe accident safety evaluations and management measures, Nuclear Engineering and Design, 209, 173-181. https://doi.org/10.1016/S0029-5493(01)00400-9
  58. Shibazaki, H., Maruyama, Y., Kudo, T., Hashimoto, K., Maeda, A., Harada, Y., Hidaka, A., Sugimoto, J. (2001). Revaporization of CsI aerosol in a horizontal straight pipe in a severe accident condition, Nuclear Technology, 134, 62-70. https://doi.org/10.13182/NT01-A3186
  59. Stoeber, W. (1972). Dynamic shape factors of nonspherical aerosol particles, In Assessment of airborne particles (Mercer, T. T., Morrow, P. E., and Stoeber, W. Ed.), Chapter 14, Charles C. Thomas Publisher.
  60. Von der Hardt, P., Jones, A. V., Lecomte, C., and Tattegrain, A. (1994). Nuclear safety research: The Phebus FP severe accident experimental program, Nuclear Safety, 35, 187-204.
  61. Zeller, W. (1985). Direct measurement of aerosol shape factors, Aerosol Science and Technology, 4, 45-63. https://doi.org/10.1080/02786828508959038