DOI QR코드

DOI QR Code

From Mine Tailings to Electricity using Ecological Function: Evaluation of Increase in Current Density by Increasing the Oxidation Rate of Pyrite using Iron Oxidizing Bacteria

생태학적 기능을 이용한 광미 활용 전기 생산: 철산화박테리아를 이용한 황철석 산화 속도 증진을 통한 전류 밀도 향상 가능성 평가

  • Ju, Won Jung (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Jho, Eun Hea (Integrated Research Institute of Construction and Environment, Seoul National University) ;
  • Nam, Kyoungphile (Department of Civil and Environmental Engineering, Seoul National University)
  • 주원정 (서울대학교 건설환경공학부) ;
  • 조은혜 (서울대학교 건설환경종합연구소) ;
  • 남경필 (서울대학교 건설환경공학부)
  • Published : 2014.03.05

Abstract

The research evaluates the possibility of generating electricity using pyrite containing mine tailings, which are the major cause of acid mine drainage (AMD), by applying iron oxidizing bacteria (in this case, Acidithiobacillus ferrooxidans) and chemical fuel cell technology. The changes in the aqueous $Fe^{2+}$ concentration, which can represent an ionized form of pyrite, with an initial concentration of 9,000 mg/L were investigated during the 20 d growth period. Both the $Fe^{2+}$ and total iron (i.e., total $Fe^{2+}$)concentrations with or without A. ferrooxidans were observed. The $Fe^{2+}$ concentration decreased to about 6,000 mg/L, in the abiotic condition, while it decreased to about 400 mg/L in the biotic condition. The results showed that the increased $Fe^{2+}$ oxidation in the presence of A. ferrooxidans (i.e., catalytic ability of A. ferrooxidans) can be applied to electricity generation using pyrite containing mine tailings. In the co-presence of A. ferrooxidans and pyrite containing mine tailings, $Fe^{2+}$ oxidation and hence electron production increases, which, in turn, improves current density. This study can be applied to utilize ecological functions of indigenous bacteria in mine areas to enhance electricity generation efficiency.

본 연구는 광산 지역 토착미생물인 철산화박테리아 (Acidithiobacillus ferrooxidans)를 이용하여 산성광산배수의 원인물질인 황철석을 함유한 광미로부터 전기를 생산하고자 하는 목적으로 수행되고 있다. 예비실험으로서 철산화박테리아의 존재 여부가 배양액 내 $Fe^{2+}$과 총 철의 농도 변화에 미치는 영향을 관찰하였다. 철산화박테리아가 존재하지 않는 조건에서는 초기 9,000 mg/L의 $Fe^{2+}$이 약 6,000 mg/L까지 감소하였으나, 철산화박테리아가 존재하는 조건에서는 약 400 mg/L까지 감소하였다. 이는 철산화박테리아가 $Fe^{2+}$의 산화를 촉진하기 때문으로, 황철석을 활용한 연료전지에 철산화박테리아를 적용하면 $Fe^{2+}$의 산화 과정에서 생기는 전자의 이동이 증가하여 전지의 전류 밀도를 높일 수 있는 가능성을 보여준다. 본 연구는 광산 지역 토착미생물의 생태학적 기능을 활용해 광미로부터 전기를 생산해내는 기술을 개발하는 연구의 바탕을 마련한다는 점에서 의미 있다.

Keywords

References

  1. Baker, B. J. and Banfield, J. F. (2003). "Microbial communities in acid mine drainage." Fems Microbiol. Ecol., Vol. 44, No. 2, pp. 139-152. https://doi.org/10.1016/S0168-6496(03)00028-X
  2. Berner, R. A. (1984). "Sedimentary pyrite formation: an update." Geochimica Et Cosmochimica Acta, Vol. 48, No. 4, pp. 605-615. https://doi.org/10.1016/0016-7037(84)90089-9
  3. Bosecker, K. (1997). "Bioleaching: metal solubilization by microorganisms." FEMS Microbiol. Rev., Vol. 20, No. 3-4, pp. 591-604. https://doi.org/10.1111/j.1574-6976.1997.tb00340.x
  4. Brierley, J. A. (1990). "Acdidophilic thermophilic archaebacteria: Potential application for metals recovery." FEMS Microbiol. Lett., Vol. 75, No. 2, pp. 287-291. https://doi.org/10.1111/j.1574-6968.1990.tb04102.x
  5. USEPA, (2012). "Green Remediation Best Management Practices: Mining Sites." EPA 542-F-12-028. Office of Solid Waste and Emergency Response 5102G, pp. 1-6. http://cluin.org/greenremediation/docs/GR_factsheet_miningsites.pdf
  6. Evangelou, V. P. (1995). Pyrite Oxidation and its Control. CRC press., North West, F.L..
  7. Gleisner, M., Herbert Jr, R. B. and Frogner Kockum, P. C. (2006). "Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen." Chem. Geol., Vol. 225, No. 1, pp. 16-29. https://doi.org/10.1016/j.chemgeo.2005.07.020
  8. Ji, M., Yoon, H., Ji, E. Lee, W., Park, Y., Yang, J., Jeon, B., Shim, Y. S., Kang, M. H. and Choi, J. (2010). "Development of control technology for acid mine drainage by coating on the surface of pyrite using chemicals." J. Korean Soc. Soil Groundwater Env., Vol. 15, No. 4, pp. 46-52. (in Korean)
  9. Johnson, D. B. and Hallberg, K. B. (2005). "Acid mine drainage remediation options: a review." Sci. Tot. Env., Vol. 338, No. 1-2, pp. 3-14. https://doi.org/10.1016/j.scitotenv.2004.09.002
  10. Kim, B. H., Chang, I. S. and Gadd, G. M. (2007). "Challenges in microbial fuel cell development and operation." Appl. Microbiol. Biotech., Vol. 76, No. 3, pp. 485-494. https://doi.org/10.1007/s00253-007-1027-4
  11. Leduc, L. and Ferroni, G. (1994). "The chemolithotrophic bacterium Thiobacillus ferrooxidans." FEMS Microbiol. Rev., Vol. 14, No. 2, pp. 103-119. https://doi.org/10.1111/j.1574-6976.1994.tb00082.x
  12. Logan, B. E. (2008). Microbial fuel cells, John Wiley and Sons. Hoboken, N.J..
  13. Mine Reclamation Corp. (2013). Yearbook of MIRECO Statistics, Mine Reclamation Corp., Jongno-gu, Seoul, Korea. (in Korean)
  14. Nordstrom, D. K. (1982). "Aqueous pyrite oxidation and the consequent formation of secondary iron minerals." Acid sulfate weathering, pp. 37-56.
  15. O'Hayre, R. P., Cha, S.-W., Colella, W. and Prinz, F. B. (2006). Fuel cell fundamentals, John Wiley and Sons. New York, N.Y..
  16. Rabaey, K., Lissens, G., Siciliano, S. D. and Verstraete, W. (2003). "A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency." Biotechnol. lett., Vol. 25, No. 18, pp. 1531-1535. https://doi.org/10.1023/A:1025484009367
  17. Rawlings, D. E. (2002). "Heavy metal mining using microbes." Ann. Rev. Microbiol., Vol. 56, pp. 65-91. https://doi.org/10.1146/annurev.micro.56.012302.161052
  18. Sand, W., Rohde, K., Sobotke, B. and Zenneck, C. (1992). "Evaluation of for leaching." Appl. Env. Microbiol., Vol. 58, No. 1, pp. 85-92.
  19. Silverman, M. P. and Lundgren, D. G. (1958). "Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans: I. an improved medium and a harvesting procedure for securing high cell yields." J. Bacteriol., Vol. 77, No. 5, pp. 642-647.
  20. Singer, P. C. and Stumm, W. (1970). "Acidic mine drainage: the rate-determining step." Sci., Vol. 167, No. 3921, pp. 1121-1123. https://doi.org/10.1126/science.167.3921.1121
  21. Viollier, E., Inglett, P., Hunter, K., Roychoudhury, A. and Van Cappellen, P. (2000). "The ferrozine method revisited: Fe (II)/Fe (III) determination in natural waters." Appl. Geochem., Vol. 15, No. 6, pp. 785-790. https://doi.org/10.1016/S0883-2927(99)00097-9
  22. Waksman, S. A. and Joffe, J. (1922). "Microorganisms concerned in the oxidation of sulfur in the soil: II. Thiobacillus Thiooxidans, a new sulfur-oxidizing organism isolated from the soil 1." J. Bacteriol., Vol. 7, No. 2, pp. 239.
  23. Zhang, T., Zeng, Y., Chen, S., Ai, X. and Yang, H. (2007). "Improved performances of E. coli-catalyzed microbial fuel cells with composite graphite/PTFE anodes." Electrochem. Comm., Vol. 9, No. 3, pp. 349-353. https://doi.org/10.1016/j.elecom.2006.09.025

Cited by

  1. Effect of Pyrite and Indigenous Bacteria on Electricity Generation Using Mine Tailings vol.2, pp.1, 2015, https://doi.org/10.17820/eri.2015.2.1.093
  2. Determining the reuse of metal mine wastes based on leaching test and human health risk assessment vol.24, pp.1, 2018, https://doi.org/10.4491/eer.2017.211