DOI QR코드

DOI QR Code

Effect of the Advance Ratio on the Evolution of Propeller Wake

전진비가 추진기 후류에 미치는 영향

  • Baek, Dong Geun (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Yoon, Hyun Sik (Global Core Research Center for Ships and Offshore Plants, Pusan National University) ;
  • Jung, Jae Hwan (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Kim, Ki-Sup (Marine Transportation Research Division, KIOST/ MOERI) ;
  • Paik, Bu-Geun (Marine Transportation Research Division, KIOST/ MOERI)
  • 백동근 (부산대학교 조선해양공학과) ;
  • 윤현식 (부산대학교 조선해양플랜트글로벌핵심연구센터) ;
  • 정재환 (부산대학교 조선해양공학과) ;
  • 김기섭 (한국해양과학기술원 선박해양플랜트연구소 해양운송연구부) ;
  • 백부근 (한국해양과학기술원 선박해양플랜트연구소 해양운송연구부)
  • Received : 2013.08.14
  • Accepted : 2013.10.17
  • Published : 2014.02.20

Abstract

The present study numerically investigated the effect of the advance ratio on the wake characteristics of the marine propeller in the propeller open water test. Therefore, a wide range of the advance ratio(0.2${\kappa}-{\omega}$SST Model are considered. The three-dimensional vortical structures of tip vortices are visualized by the swirl strength, resulting in fast decay of the tip vortices with increasing the advance ratio. Furthermore, to better understanding of the wake evolution, the contraction ratio of the slip stream for different advance ratios is extracted from the velocity fields. Consequently, the slip stream contraction ratio decreases with increasing the advance ratio and successively the difference of the slip stream contraction ratio between J=0.2 and J=0.8 is about 0.1R.

Keywords

References

  1. Di Felice, F. Di Florio, D. Felli, M. & Romano, G. P., 2004. Experimental Investigation of the Propeller Wake at Different Loading Conditions by Particle Image Velocimetry. Journal of Ship Research, 48(2), pp.168-190.
  2. Felli, M. Di Felice, F. Guj, G. Roberto, C., 2006. Analysis of the Propeller Wake Evolution by Pressure and Velocity Phase Measurements. Experiments in Fluids, 41, pp.441-451. https://doi.org/10.1007/s00348-006-0171-4
  3. Felli, M. Camussi, R. & Di Felice, F., 2011a. Mechanisms of Evolution of the Propeller Wake in the Transition and far Fields. Journal of Fluid Mechanics, 682, pp.5-53. https://doi.org/10.1017/jfm.2011.150
  4. Felli, M. Falchi, M. & Pereira, F., 2011b. Investigation of the flow field around a propeller-rudder configuration: on-surface pressure measurements and velocity-pressure-phase-locked correlations. Second International Symposium on Marine Propulsors, Italy, June 2011, pp.169-177.
  5. Fujisawa, J. Ukon, Y. Kume, K. & Takeshi, H., 2000. Local Velocity Field Measurements around the KCS Model (SRI M.S.No.631) in the SRI 400m Towing Tank. Ship Performance Division Report No. 00-003-02, Tokyo: Ship Research Institute.
  6. Jang, H. & Mahesh, K. 2013. Large Eddy Simulation of flow around a Reverse Rotating Propeller. Journal of Fluid Mechanics, 729, pp.151-179. https://doi.org/10.1017/jfm.2013.292
  7. Lee, S.J. Paik, B.G. Yoon, J.H. & Lee, C.M., 2004. Three-Component Velocity Field Measurements of Propeller Wake using a Stereoscopic PIV Technique. Experiments in Fluids, 36, pp.575-585. https://doi.org/10.1007/s00348-003-0699-5
  8. Morgut, M. & Nobile, E., 2012. Influence of Grid Type and Turbulence Model on the Numerical Prediction of the Flow around Marine Propellers Working in Uniform Inflow. Ocean Engineering, 42, pp.26-34. https://doi.org/10.1016/j.oceaneng.2012.01.012
  9. Paik, B.G. Kim, J. Park, Y.H. Kim, K.S. & Yu, K.K., 2007. Analysis of Wake behind a Rotating Propeller using PIV Technique in a Cavitation Tunnel. Ocean Engineering, 34, pp.594-604. https://doi.org/10.1016/j.oceaneng.2005.11.022
  10. Paik, B.G. Kim, K.Y. Ahn, J.W. Kim, Y.S. Kim, S.P. Park, J.J., 2008a. Experimental Study on the Gap Entrance Profile Affecting Rudder Gap Cavitation. Ocean Engineering, 35, pp. 139-149. https://doi.org/10.1016/j.oceaneng.2007.07.013
  11. Paik, B.G. Kim, K.Y. Ahn, J.W. Park, S.H. Heo, J.K. & Yu, B.S., 2008b. Influence on the Rudder Gap Cavitation by the Scaling of its Clearance. Ocean Engineering, 35, pp.1707-1715. https://doi.org/10.1016/j.oceaneng.2008.09.005
  12. Paik, B.G. Kim, K.Y. Kim, K.S. Park, S.H. Heo, J.K. Yu, B.S., 2010. Influence of Propeller Wake Sheet on Rudder Gap Flow and Gap Cavitation. Ocean Engineering, 37, pp. 1418-1427. https://doi.org/10.1016/j.oceaneng.2010.07.002
  13. Paik, B.G. Kim, G.D. Kim, K.S. Kim, K.Y. & Seo, S.B., 2012. Measurements of the Rudder Inflow Affecting the Rudder Cavitation. Ocean Engineering, 48, pp.1-9. https://doi.org/10.1016/j.oceaneng.2012.03.005
  14. Park, H.S. Yoon, H.S. Kim, M.C. & Chun, H.H., 2011. Study on the Resultant Vorticity Numerical Model of the Propeller Wake. Journal of the Society of Naval Architects of Korea, 48(2), pp.141-146. https://doi.org/10.3744/SNAK.2011.48.2.141
  15. Peng, H.H. Qiu, W. & Ni, S., 2013. Effect of Turbulence Models on RANS Computation of Propeller Vortex Flow. Ocean Engineering, 72, pp.304-317. https://doi.org/10.1016/j.oceaneng.2013.07.009
  16. Van, S.H. Kim, W.J. Yoon, H.S. Lee, Y.Y. & Park, I. R., 2006. Flow Measurement around a Model Ship with Propeller and Rudder. Experiments in Fluids, 40, pp.533-545. https://doi.org/10.1007/s00348-005-0093-6
  17. Wu, S. & Liu, H., 2011. Numerical Study of a Flap Rudder Based on Turbulence Model LES. Applied Mechanics and Materials, 88-89, pp.240-243. https://doi.org/10.4028/www.scientific.net/AMM.88-89.240
  18. Zhou, J. Adrian, R.J. & Balachandar, S., 1996. Auto Generation of Near-Wall Vortical Structures in Channel Flow. Physics of Fluids, 8, pp.288-290. https://doi.org/10.1063/1.868838