과제정보
연구 과제 주관 기관 : Ministry of Health
참고문헌
- Bayraktar, H., Morgan, E., Niebur, G., Morris, G., Wong, E. and Keaveny, M. (2004), "Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue", J. Biomech., 37, 27-35. https://doi.org/10.1016/S0021-9290(03)00257-4
- Bessho, M., Ohnishi, I., Matsuyama, J., Matsumoto, T., Imai, K. and Nakamura, K. (2007), "Prediction of strength and strain of the proximal femur by a CT-based finite element method", J. Biomech., 40, 1745-1753. https://doi.org/10.1016/j.jbiomech.2006.08.003
- Bowman, S.M., Keaveny, T., Gibson, J.L., Hayes, W. and McMahon, T.A. (1994), "Compressive creep behavior of bovine trabecula bone", J. Biomech., 27, 301-310. https://doi.org/10.1016/0021-9290(94)90006-X
- Caler, W.E. and Carter, D.R. (1989), "Bone creep-fatigue damage accumulation", J. Biomech., 22, 625-635. https://doi.org/10.1016/0021-9290(89)90013-4
- Fondrk, M., Bahniuk, E., Davy, D.T. and Michaels, C. (1988), "Some viscoplastic characteristics of bovine and human cortical bone", J. Biomech., 21, 623-630. https://doi.org/10.1016/0021-9290(88)90200-X
- Juszczyk, M.M., Cristofolini, L. and Viceconti, M. (2011), "The human proximal femur behaves linearly elastic up to failure under physiological loading conditions", J. Biomech., 44, 2259-2266. https://doi.org/10.1016/j.jbiomech.2011.05.038
- Keyak, J.H., Meagher, J.M., Skinner, H.B. and Mote, J.C.D. (1990), "Automated three dimensional finite element modelling of bone: A new method", ASME J. Biomech. Eng., 12, 389-397.
- Lakes, R., Katz, J. and Sternstein, S. (1979), "Viscoelastic properties of wet cor tical bone I. Torsional and biaxial studies", J. Biomech., 12, 657-678. https://doi.org/10.1016/0021-9290(79)90016-2
- Luo, J., Pollintine, P., Gomm, E., Dolan, P. and Adams, M.A. (2012), "Vertebral deformity arising from an accelerated "creep" mechanism", Eur. Spine J., 21,1684-1691. https://doi.org/10.1007/s00586-012-2279-y
- Norman, T.L., Shultz, T., Noble, G., Gruen, T.A. and Blaha, J.D. (2013), "Bone creep and short and long term subsidence after cemented stem total hip arthroplasty (THA) ", J. Biomech., 46, 949-955. https://doi.org/10.1016/j.jbiomech.2012.12.010
- Schileo, E., Taddei, F., Malandrino, A., Cristofolini, L. and Viceconti, M. (2007), "Subject-specific finite element models can accurately predict strain levels in long bones", J. Biomech., 40, 2982-2989. https://doi.org/10.1016/j.jbiomech.2007.02.010
- Trabelsi, N., Yosibash, Z. and Milgrom, C. (2009), "Validation of subject-specific automated p-FE analysis of the proximal femur", J. Biomech., 42, 234-241 https://doi.org/10.1016/j.jbiomech.2008.10.039
- Viceconti, M., Davinelli, M., Taddei, F. and Cappello, A. (2004), "Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies", J. Biomech., 37, 1597-1605. https://doi.org/10.1016/j.jbiomech.2003.12.030
- Yosibash, Z., Padan, R., Joscowicz, L. and Milgrom, C. (2007a), "A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments", ASME J. Biomech. Eng., 129, 297-309 https://doi.org/10.1115/1.2720906
- Yosibash, Z., Trabelsi, N. and Milgrom, C. (2007b), "Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations", J. Biomech., 40, 3688-3699 https://doi.org/10.1016/j.jbiomech.2007.06.017
- Zilch, H., Rohlmann, A., Bergmann, G. and Kolbel, R. (1980), "Material properties of femoral cancellous bone in axial loading. Part II: Time dependent properties", Acta Orthop. Traumat. Surg., 97, 257-262. https://doi.org/10.1007/BF00380706
피인용 문헌
- Predicting the stiffness and strength of human femurs with real metastatic tumors vol.69, 2014, https://doi.org/10.1016/j.bone.2014.09.022
- Approximated 3D non-homogeneous model for the buckling and vibration analysis of femur bone with femoral defects vol.5, pp.1, 2014, https://doi.org/10.12989/bme.2020.5.1.025