한국학교수학회논문집 (Journal of the Korean School Mathematics Society)
- 제17권4호
- /
- Pages.717-746
- /
- 2014
- /
- 1229-0890(pISSN)
- /
- 2713-4350(eISSN)
메타인지 전략 학습을 통한 수학적 사고력 신장 방안 연구
Metacognitive Learning Methods to Improve Mathematical Thinking
- Park, Hey-Yeun (Seongnam bokjeong High School) ;
- Jung, Soon-Mo (Pyeongtaek Anil Middle School) ;
- Kim, Yunghwan (Kongju National University)
- 투고 : 2014.12.04
- 심사 : 2014.12.25
- 발행 : 2014.12.30
초록
21세기 지식 기반 사회에 적합한 인재는 자기주도적으로 지적 가치를 창출할 수 있는 자율적이고 창의적인 사고력을 갖춘 사람으로, 수학교육 현장에서는 학생들의 창의사고력이 강조되고 있다. 이러한 창의사고력은 자신의 사고과정을 모니터하고 조절 통제하는 메타인지능력과 밀접한 관련이 있다. 이에 본고에서는 메타인지와 관련된 여러 연구결과들의 통합을 통해 '메타인지능력과 수학적 사고력과의 상관관계, 메타인지 전략을 활용한 교수 학습 방법 및 그 효과, 메타인지 능력 향상을 통한 수학적 사고력 신장 방안'을 고찰하고자 하였다.
The study aimed to explore how to improve mathematical thinking through metacognitive learning by stressing metacognitive abilities as a core strategy to increase mathematical creativity and problem-solving abilities. Theoretical exploration was followed by an analysis of correlations between metacognitive abilities and various ways of mathematical thinking. Various metacognitive teaching and learning methods used by many teachers at school were integrated for sharing. Also, the methods of learning application and assessment of metacognitive thinking were explored. The results are as follows: First, metacognitive abilities were positively related to 'reasoning, communication, creative problem solving and commitment' with direct and indirect effects on mathematical thinking. Second, various megacognitive ability-applied teaching and learning methods had positive impacts on definitive areas such as 'anxiety over Mathematics, self-efficacy, learning habit, interest, confidence and trust' as well as cognitive areas such as 'learning performance, reasoning, problem solving, metacognitive ability, communication and expression', which is a result applicable to top, middle and low-performance students at primary and secondary education facilities. Third, 'metacognitive activities, metaproblem-solving process, personal strength and weakness management project, metacognitive notes, observation tables and metacognitive checklists' for metacognitive learning were suggested as alternatives to performance assessment covering problem-solving and thinking processes. Various metacognitive learning methods helped to improve creative and systemic problem solving and increase mathematical thinking. They did not only imitate uniform problem-solving methods suggested by a teacher but also induced direct experiences of mathematical thinking as well as adjustment and control of the thinking process. The study will help teachers recognize the importance of metacognition, devise and apply teaching or learning models for their teaching environments, improving students' metacognitive ability as well as mathematical and creative thinking.