DOI QR코드

DOI QR Code

Design and Analysis of Collision Alarm Using Infrared Distance Sensor

적외선 거리 센서를 사용한 충돌 경보기 설계 및 특성 분석

  • Kim, Byoung-Ho (Biomimetics, Robotics and Wellness Lab., Dept. of Mechatronics Eng., Kyungsung University)
  • 김병호 (경성대학교 메카트로닉스공학과 생체모방, 로봇 및 웰니스 연구실)
  • Received : 2014.09.14
  • Accepted : 2014.11.10
  • Published : 2014.12.25

Abstract

This paper specifies a collision alarm using an infrared distance sensor that can identify the dangerousness of collision of active mobile robotic systems to various objects, such as unknown objects or another robots. And we analyse the major operating signals and features of the collision alarm for effective industrial applications. For the purpose, we consider a typical parking situation of a mobile robotic system with the collision alarm designed. As a result, it is shown that the proposed collision alarm is applicable for effective collision avoidance and safe driving of various mobile robots or vehicles.

본 논문에서는 근접거리측정이 가능한 적외선 거리 센서를 사용하여 다양한 물체 및 로봇과 이동 로봇 메커니즘간의 충돌 위험성을 확인할 수 있는 충돌 경보기를 제시하고, 이 경보기의 효과적인 산업 응용을 위하여 중요한 신호의 생성 과정 및 동작 특성을 분석하고자 한다. 이를 위하여 제시된 충돌 경보기를 탑재한 이동 로봇 시스템이 전형적인 주차 동작을 수행하는 상황을 고려한다. 결과적으로, 제시된 충돌 경보기는 다양한 이동 로봇이나 차량 메커니즘의 충돌 회피 및 안전 운행을 위하여 유용하게 활용될 수 있음을 보인다.

Keywords

References

  1. http://www.mobilerobots.com, Adept Technology Inc..
  2. http://www.samsungtechwin.com, Samsung Techwin Co..
  3. M. J. Mataric, "Minimizing complexity in controlling a collection of mobile robots," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 830-835, 1992.
  4. A. Fujimori, M. Teramoto, P. N. Nikiforuk, and M. M. Gupta, "Cooperative collision avoidance between multiple mobile robots," Jour. of Robotic Systems, vol. 17, no. 7, pp. 347-363, 2000. https://doi.org/10.1002/1097-4563(200007)17:7<347::AID-ROB1>3.0.CO;2-A
  5. K. J. Kyriakopoulost and G. N. Saridist, "An integrated collision prediction and avoidance scheme for mobile robots in non-stationary environments," Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 194-199, 1992.
  6. N. Y. Ko and B. H. Lee, "Moving obstacle avoidance of a robot using avoidability measure," Jour. of Control, Automation and Systems Engineering, vol. 3, no. 2, pp. 169-178, 1997.
  7. S.-H. Ha, I.-C. Choe, H.-S. Kim, and H.-T. Jeon, "Collision-avoidance and optimal path planning of autonomous mobile robot using soft-computing," Jour. of Korean Institute of Intelligent Systems, vol. 20, no. 2, pp. 195-201, 2010. https://doi.org/10.5391/JKIIS.2010.20.2.195
  8. http://www.sharp-world.com/products/device/catalog, Sharp Co..
  9. https://play.google.com/store/apps, Smart Tools Co..
  10. D.-J. Seo, S.-W. Noh and N.-Y. Ko, "Moving object following control for differential drive robot based on two distance sensors," Journal of The Korea Institute of Electronic Communication Sciences, vol. 6, no. 5, pp. 765-773, 2011.
  11. Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K, Fujimura, "The intelligent ASIMO: system overview and integration," Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 2478-2483, 2002.
  12. http://www.bostondynamics.com : PETMAN.
  13. G. S. Hornby, S. Takamura, T. Yamamoto, and M. Fujita, "Autonomous evolution of dynamic gaits with two quadruped robots," IEEE Transactions on Robotics, vol. 21, no. 3, pp. 402-410, 2005. https://doi.org/10.1109/TRO.2004.839222
  14. M. Raibert, K. Blankespoor, G. Nelson, R. Playter, and the BigDog Team, "BigDog, the rough-terrain quadruped robot," Proc. of the 17th World Congress The Int. Federation of Automatic Control, pp. 10822-10825, 2008.