References
- Aggelis, D.G., Soulioti, D.V., Sapouridis, N., Barkoula, N.M., Paipetis, A.S. and Matikas, T.E. (2011), "Acoustic emission characterization of the fracture process in fiberreinforced concrete", Constr. Build Mater., 25,4126-4131. https://doi.org/10.1016/j.conbuildmat.2011.04.049
- Bencardino, F., Rizzuti, L., Spadea, G. and Swamy, R.N. (2010), "Experimental evaluation of fiber reinforced concrete fracture properties", Compos. Part B: Eng., 41(1), 17-24. https://doi.org/10.1016/j.compositesb.2009.09.002
- Caggiano, A., Cremona, M. and Faella, C. (2012), "Fracture behavior of concrete beams reinforced with mixed long/short steel fibers", Constr. Build Mater., 37, 832-840. https://doi.org/10.1016/j.conbuildmat.2012.07.060
- Carpinteri, A. and Brighenti, R. (2010), "Fracture behaviour of plain and fiber-reinforced concrete with different water content under mixed mode loading", Mater. Des., 31(4), 2032-2042. https://doi.org/10.1016/j.matdes.2009.10.021
- Juarez, C., Pedro,Valdez, P., Duran, A. and Sobolev, K.(2007), "The diagonal tension behavior of fiber reinforced concrete beams", Cement Concrete Compos., 29(5), 402-408. https://doi.org/10.1016/j.cemconcomp.2006.12.009
- Chalioris, C.E. and Karayannis, C.G. (2009), "Effectiveness of the use of steel fibers on the torsional behavior of flanged concrete beams", Cement Concrete Compos., 31, 331-341. https://doi.org/10.1016/j.cemconcomp.2009.02.007
- Han, R., Zhao, S.B. and Qu, F.L. (2006), "Experimental study on the tensile performance of steel fiber reinforced concrete", China Civil Eng. J., 39(11), 63-67.
- Jin, N.G., Tian, Y. and Jin, X.Y. (2007), "Numerical simulation of fracture and damage behaviour of young concrete", Comput. Concr., 4(3), 221-234. https://doi.org/10.12989/cac.2007.4.3.221
- Koksal, F., Eyyubov, C. and Ozcan, D.M.(2002), "Effect of steel fiber volume fraction on mechanical properties of concrete", In: 5th International congress on advances in civil engineering, Istanbul, Turkey, 169-179.
- Kurihara, N., Kunieda, M., Kamada, T., Uchidab, Y. and Rokugob, K. (2000), "Tension softening diagrams and evaluation of properties of steel fiber reinforced concrete", Eng. Fract. Mech., 65(2-3), 235-245. https://doi.org/10.1016/S0013-7944(99)00116-2
- Li, Z., Li, F., Chang, T.Y.P. and Mai, Y.W. (1998), "Uniaxial tensile behavior of concrete reinforced with randomly distributed short fibers", ACI Mater. J., 95(5), 564-574.
- Lim, T.Y., Paramasivam, P. and Lee, S.L., (1987), "Analytical model for tensile behavior of steel-fiber concrete", ACI Mater. J., 84(8), 286-298.
- Luccioni, B., Ruano, G., Isla, F., Zerbino, R. and Giaccio, G. (2012), "A simple approach to model SFRC", Constr. Build Mater., 37, 111-124. https://doi.org/10.1016/j.conbuildmat.2012.07.027
- Michels, J., Christen, R. and Waldmann, D. (2013), "Experimental and numerical investigation on postcrackingbehavior of steel fiber reinforced concrete", Eng. Fract. Mech., 98,326-349. https://doi.org/10.1016/j.engfracmech.2012.11.004
- Mohammadi, Y., Singh, S.P. and Kaushik, S.K. (2008), "Properties of steel fibrous concretecontaining mixed fibers in fresh and hardened state", Constr. Build Mater., 22, 956-965. https://doi.org/10.1016/j.conbuildmat.2006.12.004
- Olivito, R.S. and Zuccarello, F.A. (2010), "An experimental study on the tensile strength of steel fiber reinforced concrete", Composites Part B: Eng., 41(3), 246-255. https://doi.org/10.1016/j.compositesb.2009.12.003
- Pereira, E.N.B., Barros, J.A.O., and Camoes, A. (2008), "Steel fiber-reinforced self-compacting concrete: experimental research and numerical simulation", J. Struct. Eng., 134(8), 1310-1321. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:8(1310)
- Qian, C.X. and Indubhushan, P. (1999), "Properties of high-strength steel fiber-reinforced concrete beams in bending", Cement Concrete Comp., 21(1), 73-81. https://doi.org/10.1016/S0958-9465(98)00040-7
- Shah, S.P. (1991), "Do fibers increase the tensile strength of cement-based matrixes", ACI Mater. J., 88(6), 595-602.
- Shah, A.A. and Ribakov, Y. (2011a), "Recent trends in steel fiberd high strength concrete", Mater. Des., 32, 4122-4151. https://doi.org/10.1016/j.matdes.2011.03.030
- Shah, A.A., Alsayed, S.H., Abbas, H., and Al-Salloum, Y.A. (2012), "Predicting residual strength of non-linear ultrasonically evaluated damaged concrete using artificial neural network", Constr. Build Mater., 29(1), 42-50. https://doi.org/10.1016/j.conbuildmat.2011.10.038
- Shah, A.A., Ribakov, Y., (2011b), "Estimation of RC slab-column joints effective strength using neural networks", Lat. Am. J. Solid Strurct., 8(4), 393-411. https://doi.org/10.1590/S1679-78252011000400002
- Shah, A.A. andRibakov, Y. (2010), "Effectiveness of nonlinear ultrasonic and acoustic emission evaluation of concrete with distributed damages", Mater. Des., 31(8), 3777-3784. https://doi.org/10.1016/j.matdes.2010.03.020
- Shah, A.A., Ribakov, Y., and Zhang, C.H. (2013), "Efficiency and sensitivity of linear and non-linear ultrasonic techniques to identifying micro and macro scale defects in concrete", Mater. Des., 50(6), 905-1016. https://doi.org/10.1016/j.matdes.2013.03.079
- Shah, A.A. and Hirose, S. (2010), "Nonlinear ultrasonic investigation of concrete damaged under uniaxial compression step loading", J. Mater. Civil Eng, 22(5), 476-484. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000050
- Soulioti, D., Barkoula, N.M., Paipetis, A.,Matikas, T.E., Shiotani, T. and Aggelis, D.G. (2009), "Acoustic emission behavior of steel fiber reinforced concrete under bending", Constr. Build Mater., 23(12), 3532-3536. https://doi.org/10.1016/j.conbuildmat.2009.06.042
- Teng, T.L., Chu, Y.A., Chang, F.A., Shen, B.C. and Cheng, D.S. (2008), "Development and validation ofnumerical model of steel fiber reinforced concrete for high-velocity impact", Comp. Mater. Sci., 42(1), 90-99. https://doi.org/10.1016/j.commatsci.2007.06.013
- Uygunoqlu, T. (2008), "Investigation of microstructure and flexural behavior of steel-fiber reinforced concrete", Mater. Struct., 41(8), 1441-1449. https://doi.org/10.1617/s11527-007-9341-y
- Wang, Z.L., Wu, J. and Wang, J.G. (2010), "Experimental and numerical analysis on effect of fiber aspect ratio on mechanical properties of SFRC", Constr. Build Mater., 24, 559-565. https://doi.org/10.1016/j.conbuildmat.2009.09.009
- Wang, Q.S., Li, X.B.,Zhao, G.Y., Shao, P. and Yao, J.R. (2008), "Experiment on mechanical properties of steel fiber reinforced concrete and application in deep underground engineering", J. China Univ. Mining. Technol., 18(1), 64-66. https://doi.org/10.1016/S1006-1266(08)60014-0
- Yazici, S., Inan, G. and Tabak, V. (2007), "Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC", Constr. Build Mater., 21(6), 1250-1253. https://doi.org/10.1016/j.conbuildmat.2006.05.025
- Zhang, J., Stang, H. and Li, V.C. (2001), "Crack bridging model for fiber reinforced concrete under fatigue tension", Int. J. Fatigue., 23(8), 655-670. https://doi.org/10.1016/S0142-1123(01)00041-X
Cited by
- A reaction-diffusion modeling of carbonation process in self-compacting concrete vol.15, pp.5, 2015, https://doi.org/10.12989/cac.2015.15.5.847
- Acoustic emission characterization of the fracture process in steel fiber reinforced concrete vol.18, pp.6, 2016, https://doi.org/10.12989/cac.2016.18.6.921
- Fiber-Reinforced Concrete with Application in Civil Engineering vol.2018, pp.1687-8094, 2018, https://doi.org/10.1155/2018/1698905
- Acoustic emission characterization of the fracture process in steel fiber reinforced concrete vol.18, pp.4, 2014, https://doi.org/10.12989/cac.2016.18.4.923
- Influence of nano-silica on the failure mechanism of concrete specimens vol.19, pp.4, 2014, https://doi.org/10.12989/cac.2017.19.4.429
- Contribution of steel fiber as reinforcement to the properties of cement-based concrete: A review vol.20, pp.2, 2014, https://doi.org/10.12989/cac.2017.20.2.155
- Flexural analysis of steel fibre-reinforced concrete members vol.22, pp.1, 2014, https://doi.org/10.12989/cac.2018.22.1.011
- Influence of pre-compression on crack propagation in steel fiber reinforced concrete vol.11, pp.3, 2021, https://doi.org/10.12989/acc.2021.11.3.261