참고문헌
- Cheerarot, R. and Jaturapitakkul, C. (2003), "Development of bottom ash as pozzolanic material", J. Mater Civil Eng., 15(1), 48-54. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:1(48)
- Cheriaf, M., Rocha, J.C. and Pera, J. (1999), "Pozzolanic properties of pulverized coal combustion bottom ash", Cement Concrete Res., 29(9), 1387-1391. https://doi.org/10.1016/S0008-8846(99)00098-8
- Chindaprasirt, P., Chotithanorm, C., Cao, H.T. and Sirivivatnanon, V. (2007), "Influence of fly ash fineness on the chloride penetration of concrete", Constr. Build. Mater., 21(2), 356-361. https://doi.org/10.1016/j.conbuildmat.2005.08.010
- Chindaprasirt, P., Jaturapitakkul, C. and Sinsiri, T. (2005), "Effect of fly ash fineness on compressive strength and pore size of blended cement paste", Cement Concrete Compos., 27(4), 425-428. https://doi.org/10.1016/j.cemconcomp.2004.07.003
- Chindaprasirt, P., Ruangsiriyakul, S., Cao, H.T. and Bucea, L. (2001), "Influence of Mae Moh fly ash fineness on characteristics, strength and drying shrinkage development of blended cement mortars", In: The Eighth East Asia-Pacific Conference on Structural Engineering and Construction, Singapore, December.
- Chindaprasirt, P., Rukzon, S. and Sirivivatnanon, V. (2008) "Resistance to chloride penetration of blended portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash", Constr. Build. Mater., 22(5), 932-938. https://doi.org/10.1016/j.conbuildmat.2006.12.001
- Ganesan, K., Rajagopal, K. and Thangavel, K. (2008), "Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete", Constr. Build. Mater., 22(8), 1675-1683. https://doi.org/10.1016/j.conbuildmat.2007.06.011
- Gastaldini, A.L.G., Isaia, G.C., Gomes, N.S. and Sperb, J.E.K. (2007), "Chloride penetration and carbonation in concrete with rice husk ash and chemical activators", Cement Concrete Compos., 29(3), 176-180. https://doi.org/10.1016/j.cemconcomp.2006.11.010
- Habeeb, G.A. and Fayyadh, M.M. (2009), "Rice husk ash concrete: the effect of RHA average particle size on mechanical properties and drying shrinkage", Aust. J. Basic Appl. Sci., 3(3), 1616-1622.
- Habert, G., Billard, C., Rossi, P., Chen, C. and Roussel, N. (2010), "Cement production technology improvement compared to factor 4 objectives", Cement Concrete Res., 40(5), 820-826. https://doi.org/10.1016/j.cemconres.2009.09.031
- Isaia, GC., Gastaldini, ALG. and Moraes, R. (2003), "Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete", Cement Concrete Compos., 25(1), 69-76. https://doi.org/10.1016/S0958-9465(01)00057-9
- Kiattikomol, K., Jaturapitakkul, C., Songpiriyakij, S. and Chutubtim, S. (2001), "A study of ground coarse fly ashes with different finenesses from various sources as pozzolanic materials", Cement Concrete Compos., 23(4-5), 335-343. https://doi.org/10.1016/S0958-9465(01)00016-6
- Marks, M., Jozwiak, N.D. and Glinicki, M.A. (2012), "Automatic categorization of chloride migration into concrete modified with CFBC ash", Comput Concr., 9(5), 375-387. https://doi.org/10.12989/cac.2012.9.5.375
- Mejlbro, L. and Poulsen, E. (2006), Diffusion of Chloride in Concrete, Taylor and Francis Inc, New York.
- Naik, T.R. and Singh, S.S. (1994), "Permeability of concrete containing large amounts of fly ash", Cement Concrete Res., 24(5), 913-922. https://doi.org/10.1016/0008-8846(94)90011-6
- Nair, D.G., Fraaij, A., Klaassen, A.K. and Kentgens, P.M. (2008), "A structural investigation relating to the pozzolanic activity of rice husk ashes", Cement Concrete Res., 38(6), 861-869. https://doi.org/10.1016/j.cemconres.2007.10.004
-
Otsuki, N., Nagataki, S. and Nakashita, K. (1993), "Evaluation of
$AgNO_{3}$ solution spray method for measurement of chloride penetration into hardened cementitious matrix materials", Constr. Build. Mater., 7(4), 195-201. https://doi.org/10.1016/0950-0618(93)90002-T - Stanish, K.D., Hooton, R.D. and Thomas, M.D.A. (1997), Testing the chloride penetration resistance of concrete: A literature review, Department of Civil Engineering, University of Toronto, Ontario, Canada.
- Sata, V., Jaturapitakkul, C. and Kiattikomol, K. (2007), "Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete", Constr. Build. Mater., 27(7), 1589-1598.
- Tangpagasit, J., Cheerarot, R., Jaturapitakkul, C. and Kiattikomol, K. (2005), "Packing effect and pozzolanic reaction of fly ash in mortar", Cement Concrete Res., 35(6), 1145-1151. https://doi.org/10.1016/j.cemconres.2004.09.030
- Wang, X.Y., Park, K.B. and Lee, H.S. (2012), "Modeling of chloride diffusion in a hydrating concrete incorporating silica fume", Comput. Concr., 10(5), 523-539. https://doi.org/10.12989/cac.2012.10.5.523
- Wee, T.H., Suryavanshi, A.K. and Tin, S.S. (2000) "Evaluation of rapid chloride permeability test (RCPT) results for concrete containing mineral admixtures", ACI Mater. J., 97(M29), 221-232.
- Yazici, H., Aydun, S., Yigiter, H. and Baradan, B. (2005), "Effect of steam curing on class C high-volume fly ash concrete mixtures", Cement Concrete Res., 35(6), 1122-1127. https://doi.org/10.1016/j.cemconres.2004.08.011
- Zhang, S., Dong, X. and Jiang, J. (2013), "Effect of measurement method and cracking on chloride transport in concrete", Comput. Concr., 11(4), 315-316.
피인용 문헌
- Experimental investigation on durability performance of rubberized concrete vol.2, pp.3, 2014, https://doi.org/10.12989/acc.2014.2.3.193
- Chloride Diffusion Modeling in Pozzolanic Concrete in a Marine Site vol.115, pp.4, 2018, https://doi.org/10.14359/51702185
- Experimental and Numerical Investigation on Flexural and Crack Failure of Reinforced Concrete Beams with Bottom Ash and Fly Ash vol.44, pp.suppl1, 2020, https://doi.org/10.1007/s40996-020-00465-y