References
- Razeghifard, R. 2013. Algal biofuels. Photosynthesis research. 117, 207-219. https://doi.org/10.1007/s11120-013-9828-z
- Dwivedi, G., and M. Sharma. 2013. Cold Flow Behavior of Biodiesel-A Review. International Journal of Renewable Energy Research (IJRER). 3, 827-836.
- Zhukova, N. V., and N. A. Aizdaicher. 1995. Fatty acid composition of 15 species of marine microalgae. Phytochemistry. 39, 351-356. https://doi.org/10.1016/0031-9422(94)00913-E
- Moser, B. R. 2011. Biodiesel production, properties, and feedstocks. pp. 285-347. Biofuels. Springer, City.
- Sendzikiene, E., V. Makareviciene, and P. Janulis. 2005. Oxidation stability of biodiesel fuel produced from fatty wastes. Polish Journal of Environmental Studies. 14, 335-339.
- Cao, Y., W. Liu, X. Xu, H. Zhang, J. Wang, and M. Xian. 2014. Production of free monounsaturated fatty acids by metabolically engineered Escherichia coli. Biotechnology for biofuels. 7, 59. https://doi.org/10.1186/1754-6834-7-59
- Hoekman, S. K., A. Broch, C. Robbins, E. Ceniceros, and M. Natarajan. 2012. Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews. 16, 143-169. https://doi.org/10.1016/j.rser.2011.07.143
- Ping, B. T. Y., and M. Yusof. 2009. Characteristics and properties of fatty acid distillates from palm oil. Oil Palm Bulletin. 59, 5-11.
- Mittelbach, M., and S. Gangl. 2001. Long storage stability of biodiesel made from rapeseed and used frying oil. Journal of the American Oil Chemists' Society. 78, 573-577. https://doi.org/10.1007/s11746-001-0306-z
- Dunn, R. O. 2005. Effect of antioxidants on the oxidative stability of methyl soyate (biodiesel). Fuel Processing Technology. 86, 1071-1085. https://doi.org/10.1016/j.fuproc.2004.11.003
- Tyson, K. 2009. Biodiesel handling and use guidelines. DIANE Publishing.
-
Tripathi, R., J. Singh, and I. S. Thakur. 2015. Characterization of microalga Scenedesmus sp. ISTGA1 for potential
$CO_2$ sequestration and biodiesel production. Renewable Energy. 74, 774-781. https://doi.org/10.1016/j.renene.2014.09.005 - Fujii, K., S. Matsunobu, and Y. Takahashi. 2014. Characterization of the new microalgal strains, Oogamochlamys spp., and their potential for biofuel production. Algal Research. 5, 164-170. https://doi.org/10.1016/j.algal.2014.08.003
- Yang, Z.-K., Y.-F. Niu, Y.-H. Ma, J. Xue, M.-H. Zhang, W.-D. Yang, J.-S. Liu, S.-H. Lu, Y. Guan, and H.-Y. Li. 2013. Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol. Biofuels. 6, 1-67. https://doi.org/10.1186/1754-6834-6-1
- Lopez Barreiro, D., W. Prins, F. Ronsse, and W. Brilman. 2013. Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass and Bioenergy. 53, 113-127. https://doi.org/10.1016/j.biombioe.2012.12.029
- Zhang, X., J. Rong, H. Chen, C. He, and Q. Wang. 2014. Current Status and Outlook in the Application of Microalgae in Biodiesel Production and Environmental Protection. Frontiers in Energy Research. 2, 32.
- Otles, S., and R. Pire. 2001. Fatty acid composition of Chlorella and Spirulina microalgae species. Journal of AOAC international. 84, 1708-1714.
- 한국석유관리원, 2012. 미세조류 유래 바이오디젤 품질기준 연구. pp 25-30.
Cited by
- Biotechnological Potential of Korean Marine Microalgal Strains and Its Future Prospectives vol.41, pp.4, 2014, https://doi.org/10.4217/opr.2019.41.4.289