DOI QR코드

DOI QR Code

An Effect of Education in Faith and Propensity of Managers towards Faith on Job Satisfaction

경영 이념교육과 관리자의 신념이 직무 만족에 미치는 영향에 관한 연구

  • Received : 2013.10.31
  • Accepted : 2014.01.20
  • Published : 2014.01.28

Abstract

The purpose of this study is to explore an effect of education in faith and propensity of managers towards faith on job satisfaction. We found that education in faith has a significant effect on the role conflict. Propensity of managers towards faith also influences the job satisfaction. On the other hand, Education in faith and role conflict do not have a significant effect on the job satisfaction. Conclusions and implications are discussed.

본 연구는 조직에서 구성원들에게 제공하는 경영 이념 교육과 관리자의 조직의 이념 교육에 대한 신념이 직무 만족에 미치는 영향을 살펴보기 위해 수행되었다. 분석 결과 조직의 이념에 대한 관리자의 성향은 직무 갈등에 유의한 영향을 미치는 것으로 나타났다. 또한 관리자의 성향은 직무 만족에도 유의한 영향을 미치는 것으로 나타났다. 반면에 이념 교육과 직무 갈등은 직무만족에 아무런 영향을 미치지 않는 것으로 나타났다.

Keywords

References

  1. Bagozzi. R. P., and Yi, Y., On the Evaluation of Structural Equation Models. Journal of the Academy of Marketing Science, Vol. 16, No. 1, pp. 74-94, 1988. https://doi.org/10.1007/BF02723327
  2. Chin, W. W., The Partial Least Squares Approach to Structural Equation Modeling. In: marcoulides, G. A. (Eds.), Modern Methods for Business Research. Lawrence Erlbaum, Associates, Mahwah, NJ, pp. 295-336, 1998.
  3. Costello, A.. B., and Osborne, J. W., Best Practices in Exploratory Factor Analysis: Four Recommendations for Getting the Most from Your Analysis. Practical Assessment, Research & Evaluation, Vol. 10, No. 7, pp. 1-9, 2005.
  4. Fornell, C., and Larcker, D. F., Structural Equation Models with Unobservable Variables and Measurement Error: Algebra and Statistics. Journal of Marketing Research, Vol. 18, No. 3, pp. 52-78, 1981.
  5. Gefen, D., and Straub, D., A Practical Guide to Factorial Validity Using PLS-Graph: Tutorial and Annotated Example. Communications of the Association for Information Systems, Vol. 16, pp. 91-109, 2005.
  6. Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., and Tatham, R. L., Multivariate Data Analysis, 6th eds. Pearson Education Inc., Upper Saddle River, NJ, 2006.
  7. Hair, J. F., Ringle, C. M., and Sarstedt, M., PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, Vol. 19, No. 2, pp. 139-152, 2011. https://doi.org/10.2753/MTP1069-6679190202
  8. Hair, J. F., Sarstedt, M., Pieper, T. M., and Ringle, C. M., The Use of Partial Least Squares Structural Equation Modeling in Strategic Management Research: A Review of Past Practices and Recommendations for Future Applications. Long Range Planning, Vol. 45, pp. 320-340, 2012. https://doi.org/10.1016/j.lrp.2012.09.008
  9. Hair, J. F., Ringle, C. M., and Sarstedt, M., Partial Least Squares Structural Equation Modeling: Rigorouos Applications, Better Results and Higher Acceptance. Long Range Planning, Vol. 46, pp. 1-12, 2013. https://doi.org/10.1016/j.lrp.2013.01.001
  10. Henseler, J., Ringle, C. M., and Sinkovics, R. R., The Use of Partial Least Squares Path Modeling in International Marketing. Advances in International Marketing, Vol. 20, pp. 277-319, 2009.
  11. Henson, R. K., and Roberts, J. K., Use of Exploratory Factor Analysis in Published Research: Common Errors and Some Comment on Improved Practice. Educational and Psychological Measurement, Vol. 66, No. 3, pp. 393-416, 2006. https://doi.org/10.1177/0013164405282485
  12. Hulland, J., Use of Partial Least Squares (PLS) in Strategic Management Research: A Review of Four Recent Studies. Strategic Management Journal, Vol. 20, No. 2, pp. 195-204, 1999. https://doi.org/10.1002/(SICI)1097-0266(199902)20:2<195::AID-SMJ13>3.0.CO;2-7
  13. Nunnally, J. C., and Bernstein, I. H., Psychometric Theory, 3rd eds. New York, NY: McGraw-Hill, 1994.
  14. Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., and Podsakoff, N. P., Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. Journal of Applied Psychology, Vol. 88, No. 5, pp. 879-903, 2003. https://doi.org/10.1037/0021-9010.88.5.879
  15. Robins, J., Partial-Least Squares. Long Range Planning, Vol. 45, pp. 309-311, 2012. https://doi.org/10.1016/j.lrp.2012.10.002
  16. Sosik, J. J., Kahai, S. S., and Piovoso, M. J., Silver Bullet or Voodoo Statistics? A Primer for Using the Partial Least Squares Data Analytic Technique in Group and Organization research. Group and Organization Management, vol. 34, No. 1, pp. 5-36, 2009. https://doi.org/10.1177/1059601108329198
  17. Tenenhaus, M., Vinzi, V. E., Chaterlin, Y. M., and Lauro, C., PLS Path Modeling. Computational Statistics & Data Analysis, Vol. 48, No. 1, pp. 159-205, 2005. https://doi.org/10.1016/j.csda.2004.03.005
  18. Wetzels, M., Odekerken-Schroder, G., and van Oppen, C., Using PLS Path Modeling for Assessing Hierarchical Construct Models: Guidelines and Empirical Illustration. MIS Quarterly, Vol. 33, No. 1, pp. 177-195, 2009. https://doi.org/10.2307/20650284