DOI QR코드

DOI QR Code

CSA 팽창재를 혼입한 강섬유 보강 콘크리트의 역학적 성능 및 균열 저항성능 평가

Evaluation of Mechanical Properties and Crack Resistant Performance in Concrete with Steel Fiber Reinforcement and CSA Expansive Admixture

  • 최세진 ((재)포항산업과학연구원, 강구조연구소) ;
  • 박기태 (한국건설기술연구원) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • 투고 : 2013.07.19
  • 심사 : 2013.11.07
  • 발행 : 2014.01.30

초록

콘크리트의 취성파괴를 방지하기 위해 강섬유 보강재는 효과적인 복합재료이다. 그러나 시멘트 사용량이 많아지면 건조수축이 증가하고 이로 인해, 강섬유 보강재의 연성증가 효과가 제한될 수 있다. 팽창재를 사용한 콘크리트 내부의 강섬유 보강재는 화학적 프리스트레싱 효과가 발생하여 강섬유 보강효과를 증가시킬 수 있다. 본 연구에서는 CSA 팽창재와 강섬유 보강재를 혼입하여 콘크리트의 역학적인 특성을 분석하였다. 체적비 1~2%의 강섬유 보강재와 시멘트 중량의 10%의 CSA 팽창재를 혼입하였으며, 다양한 역학적 특성과 휨거동을 분석하였다. 강섬유 보강재를 혼입한 CSA 콘크리트는 인장강도와 초기균열강도의 증가를 나타냈으며, 균열후의 파괴에너지 증가와 같은 연성거동을 뚜렷하게 나타내었다. 적절한 팽창재 사용과 최적의 강섬유 보강재의 혼입률이 도출된다면 이들의 상호작용은 콘크리트의 취성을 더욱 효과적으로 제어할 수 있다.

In order to prevent brittle failure of concrete, steel fiber reinforcement is effective composite material. However ductility of steel fiber reinforced concrete may be limited due to shrinkage caused by large content of cement binder. Chemical prestressing for steel fiber reinforcement in cement matrix can be induced through expansive admixture and this can increase reinforcing effect of steel fiber. In this study, mechanical performances in concrete with CSA (Calcium sulfoaluminate) expansive admixture and steel fiber reinforcement are evaluated. For this work, steel fiber reinforcement of 1 and 2% of volume ratio and CSA expansive admixture of 10% weight ratio of cement are added in concrete. Mechanical and fracture properties are evaluated in concrete with steel fiber reinforcement and CSA expansive admixture. CSA concrete with steel fiber reinforcement shows increase in tensile strength, initial cracking load, and ductility performance like enlarged fracture energy after cracking. With appropriate using expansive admixture and optimum ratio of steel fiber reinforcement, their interactive action can effectively improve brittle behavior in concrete.

키워드

참고문헌

  1. ACI Committee 544 (1999), Design Consideration for Steel Fiber Reinforced Concrete, ACI 544.4R, 12-24.
  2. Adebar, P., Mindess, S., St. Pierre, D., Olund, B. (1997), Shear tests of fiber concrete beams without stirrups, ACI Structural Journal, 94(1), 68-76.
  3. Ahn, J. K. (2003), A Study on Evaluation of Crack Resistance in Chemically Prestressed Mortar, Master Thesis, Yonsei University (in Korean).
  4. Ahn, J. K., Shim, B., Song, H. W., Byun, K. J. (2003), A study on fracture characteristics of chemically prestressed mortar, KCI Spring Conference, 15(1), 828-832 (in Korean).
  5. Andac, O., Glasser, F. P. (1994), Polymorphism of Calcium Sulfoaluminate ($Ca_4Al_6O_{16}{\cdot}O_3$) and its solid solution, Advances in Cement Research, 22(6), 57-60.
  6. Cho, C. G., Han, S. J., Kwon, M. H., Lim, C. K. (2012), Seismic performance evaluation of reinforced concrete columns by applying steel fiber-reinforced mortar at plastic hinge region, Journal of the Korea Concrete Institute, 24(3), 241-248 (in Korean). https://doi.org/10.4334/JKCI.2012.24.3.241
  7. Kang, S. T., Ryu, G. S. (2011), The effect of steel-fiber contents on the compressive stress-strain relation of ultra high performance cementitious composites (UHPCC), Journal of the Korea Concrete Institute, 23(1), 67-75 (in Koran). https://doi.org/10.4334/JKCI.2011.23.1.067
  8. Kim, Y. I., Lee, Y. K., Kim, M. S. (2008), Influence of Steel Fiber Volume Ratios on Workability and Strength Characteristics of Steel Fiber Reinforced High-Strength Concrete, Journal of the Korea Institute of Building Construction, 8(3), 75-83 (in Korean). https://doi.org/10.5345/JKIC.2008.8.3.075
  9. Kim, Y. K. (2003), A Study on Evaluation of Crack Resistance in Chemically Prestressed Steel Fiber Reinforced Concrete, Master Thesis, Yonsei University (in Korean).
  10. Lee, H. H., Lee, H. J. (2004), Characteristic strength and deformation of SFRC considering steel fiber factor and volume fraction, Journal of the Korea Concrete Institute, 16(6), 759-766 (in Korean). https://doi.org/10.4334/JKCI.2004.16.6.759
  11. Li, M., Li, V. C. (2011), High-early-strength ECC for rapid durable repair: Material properties, ACI Materials Journal, 108(1), 3-12.
  12. Maltese, C., Pistolesi, C., Lolli, A., Bravo, A., Cerulli, T., Salvioni, D. (2005), Combined effect of expansive and shrinkage reducing admixtures to obtain stable and durable mortars, Cement and Concrete Research, 35(2), 2244-2251. https://doi.org/10.1016/j.cemconres.2004.11.021
  13. Nagataki. S., Gomi, H. (1998), Expansive admixtures (mainly ettringite), Cement and Concrete Composites, 20(2-3), 163-170. https://doi.org/10.1016/S0958-9465(97)00064-4
  14. Oh, H. S., Moon, D. Y. (2012), A degradation characteristic of FRP rebar attacked by combined environmental factors, Journal of the Korea Institute for Structural Maintenance and Inspection, 16(3), 1-10 (in Korean).
  15. Park, H. Y., Kim, C. Y., Choi, I. C., Bae, S. W., Ryu, J. H. (2001), Chemically prestressed precast concrete box culvert with expansive additives, Journal of the Korea Concrete Institute, 13(1), 43-51 (in Korean).
  16. Sahamitmongkol, R., Tanaka, Y., and Kishi, T. (2002), Cracking Behaviors of chemical prestressed reinforced concrete members, JSCE Fourth International Summer Symposium, Kyoto, JAPAN, 5-13.
  17. Shim, B., Kim, Y. K., Song, H. W. (2004), A Study on Crack Behavior of Chemically Prestressed Steel Fiber Reinforced Concrete, KCI Fall Conference, 16(2), 121-124 (in Korean).
  18. Won, J., Lee S., Kim Y., Jang C., Lee S. W. (2008), The effect of exposure to alkaline solution and water on the strength-porosity relationship of GFRP rebar, Composites Part B: Engineering, 39(5), 764-772. https://doi.org/10.1016/j.compositesb.2007.11.002
  19. Yoo, S. W., Kwon, S. J., Jung, S. H. (2012), Analysis technique for autogenous shrinkage on high performance concrete with mineral and chemical admixtures, Construction and Building Materials, 34(9), 1-10. https://doi.org/10.1016/j.conbuildmat.2012.02.005
  20. Yoshinori, K., Yuichi, U. (2002), Test methodfor fracture property of concrete, Concrete Journal, 40(2), 8-15 (in Japanese).

피인용 문헌

  1. Evaluation of Properties of Polymer-Modified Mortar with CSA vol.19, pp.1, 2015, https://doi.org/10.11112/jksmi.2015.19.1.035
  2. Mechanical Properties in Rice Husk Ash and OPC Concrete with Coconut Fiber Addition Ratios vol.19, pp.2, 2015, https://doi.org/10.11112/jksmi.2015.19.2.117