참고문헌
- Akavci, S.S., Yerli, H.R. and Dogan, A. (2007), "The first order shear deformation theory for symmetrically laminated composite plates on elastic foundation", Arab. J. Sci. Eng., 32(2), 341-348.
- Akhavan, H., Hosseini Hashemi, Sh., Rokni Damavandi, T.H., Alibeigloo, A. and Vahabi, Sh. (2009a), "Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: buckling analysis", Comput. Mat. Sci., 44, 968-978. https://doi.org/10.1016/j.commatsci.2008.07.004
- Akhavan, H., Hosseini Hashemi, Sh., Rokni Damavandi, T.H., Alibeigloo, A. and Vahabi, Sh. (2009a), "Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: frequency analysis", Comput. Mat. Sci., 44, 951-961. https://doi.org/10.1016/j.commatsci.2008.07.001
- Baltacioglu, A.K., Civalek, O ., Akgoz, B. and Demir, F. (2011), "Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution", Int. J. Pres. Ves. Pip., 88, 290-300. https://doi.org/10.1016/j.ijpvp.2011.06.004
- Bezine, G. (1988), "A new boundary element method for bending of plates on elastic foundations", Int. J. Sol. Struct., 24(6), 557-565. https://doi.org/10.1016/0020-7683(88)90057-1
- Buczkowski, R. and Torbacki, W. (2001), "Finite element modelling of thick plates on two-parameter elastic foundation", Int. J. Num. Anal. Meth. Geo., 25, 1409-1427. https://doi.org/10.1002/nag.187
- Choudhary, S.S. and Tungikar, V.B. (2011), "A simple finite element for nonlinear analysis of composite plates", Int. J. Eng. Sci. Tech., 3, 4897-4907.
- Chucheepsakul, S. and Chinnaboon, B. (2003), "Plates on two-parameter elastic foundations with nonlinear boundary conditions by the boundary element method", Comp. Struct., 81, 2739-2748. https://doi.org/10.1016/S0045-7949(03)00340-7
- Dash, P. and Singh, B.N. (2010), "Geometrically nonlinear bending analysis of laminated composite plate", Commun. Non. Sci. Num. Simul., 15, 3170-3181. https://doi.org/10.1016/j.cnsns.2009.11.017
- El-Zafrany, A., Fadhil, S. and Al-Hosani, K. (1995), "A new fundamental solution for boundary element analysis of this plates on winkler foundation", Int. J. Numer. Meth. Eng., 38, 887-903. https://doi.org/10.1002/nme.1620380602
- Fares, M.E. (1999), "Non-linear bending analysis of composite laminated plates using a refined first-order theory", Comp. Struct., 46,257-266. https://doi.org/10.1016/S0263-8223(99)00062-8
- Ferreira, A.J.M., Roque, C.M.C. and Martins P.A.L.S. (2003), "Analysis of composite plates using higherorder shear deformation theory and a finite point formulation based on the multiquadric radial basis function method", Comp. Part B, 34, 627-636. https://doi.org/10.1016/S1359-8368(03)00083-0
- Khajeansari, A., Baradaran, G.H. and Yvonnet, J. (2012), "An explicit solution for bending of nanowires lying on Winkler-Pasternak elastic substrate medium based on the Euler-Bernoulli beam theory", Int. J. Eng. Sci., 52, 115-128. https://doi.org/10.1016/j.ijengsci.2011.11.004
- Mindlin, R.D. (1951), "Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates", J. Appl. Mech., 18, 31-38.
- Norman, F., Knight, Jr. and Qi, Y.Q. (1997), "On a consistent first-order shear-deformation theory for laminated plates", Comp. Part B, 28B, 397-405.
- Pasternak, P.L. (1954), "New method calculation for flexible substructures on two parameter elastic foundation", Gosudarstvennogo Izdatelstoo, Literatury po Stroitelstvu i Architekture, Moskau, 1-56.
- Pietrzakowski, M. (2008), "Piezoelectric control of composite plate vibration: effect of electric potential distribution", Comp. Struct., 86(9), 948-954. https://doi.org/10.1016/j.compstruc.2007.04.023
- Ponnusamy, P. and Selvamani, R. (2012), "Wave propagation in a generalized thermo elastic plate embedded in elastic medium", Interact. Multis. Mech., 5(1), 13-26. https://doi.org/10.12989/imm.2012.5.1.013
- Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
- Reddy, B.S., Reddy, A.R., Kumar, J.S. and Reddy, K.V.K. (2012), "Bending analysis of laminated composite plates using finite element method", Int. J. Eng. Sci. Tech., 4, 177-190. https://doi.org/10.7763/IJET.2012.V4.344
- Reissner, E. (1945), "The effect of transverse shear deformation on the bending of elastic plates", J. Appl. Mech., 12, 69-77.
- Samaei, A.T., Abbasion, S. and Mirsayar, M.M. (2011), "Buckling analysis of a single-layer graphene sheet embedded in an elastic medium based on nonlocal Mindlin plate theory", Mech. Res. Comm., 38, 481-485. https://doi.org/10.1016/j.mechrescom.2011.06.003
- Sladek, J., Sladek, V. and Mang, H.A. (2002), "Meshless local boundary integral equation method for simply supported and clamped plates resting on elastic foundation", Comp. Meth. Appl. Mech. Eng., 191, 5943-5959. https://doi.org/10.1016/S0045-7825(02)00505-4
- Swaminathan, K. and Ragounadin, D. (2004), "Analytical solutions using a higher-order refined theory for the static analysis of antisymmetric angle-ply composite and sandwich plates", Comp. Struct., 64, 405-417. https://doi.org/10.1016/j.compstruct.2003.09.042
- Yas, M.H. and Sobhani, B. (2010), "Free vibration analysis of continuous grading fiber reinforced plates on elastic foundation", Int. J. Eng. Sci., 48, 1881-1895. https://doi.org/10.1016/j.ijengsci.2010.06.015
- Zenkour, A.M. (2003), "Exact mixed-classical solutions for the bending analysis of shear deformable rectangular plates", Appl. Math. Mod., 27, 515-534. https://doi.org/10.1016/S0307-904X(03)00046-5
피인용 문헌
- Nonlinear bending behavior of orthotropic Mindlin plate resting on orthotropic Pasternak foundation using GDQM vol.78, pp.3, 2014, https://doi.org/10.1007/s11071-014-1545-4
- Nonlinear vibration analysis of laminated composite Mindlin micro/nano-plates resting on orthotropic Pasternak medium using DQM vol.36, pp.8, 2015, https://doi.org/10.1007/s10483-015-1969-7
- Nonlinear bending analysis of functionally graded CNT-reinforced composite Mindlin polymeric temperature-dependent plate resting on orthotropic elastomeric medium using GDQM vol.79, pp.2, 2015, https://doi.org/10.1007/s11071-014-1751-0
- Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings pp.1435-5663, 2018, https://doi.org/10.1007/s00366-018-0646-y
- Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory pp.1435-5663, 2018, https://doi.org/10.1007/s00366-018-0609-3
- Buckling analysis of embedded laminated plates with agglomerated CNT-reinforced composite layers using FSDT and DQM vol.12, pp.2, 2014, https://doi.org/10.12989/gae.2017.12.2.327
- Hydraulic and structural considerations of dam's spillway - a case study of Karkheh Dam, Andimeshk, Iran vol.6, pp.1, 2014, https://doi.org/10.12989/smm.2019.6.1.001
- Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory vol.24, pp.4, 2019, https://doi.org/10.12989/cac.2019.24.4.369
- Experimental and numerical bending deflection of cenosphere filled hybrid (Glass/Cenosphere/Epoxy) composite vol.73, pp.6, 2014, https://doi.org/10.12989/sem.2020.73.6.715
- Nonlinear deflection responses of layered composite structure using uncertain fuzzified elastic properties vol.35, pp.6, 2014, https://doi.org/10.12989/scs.2020.35.6.753
- Low-velocity impact analysis of viscoelastic composite laminated nanoplate based on nonlocal strain gradient theory for different boundary conditions vol.23, pp.7, 2014, https://doi.org/10.1177/1099636220925070