References
- Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Meth. Eng., 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
- Dreau, K., Chevaugeon, N., Moes, N. (2010), "Studied X-FEM enrichment to handle material interfaces with higher order finite element", Comput. Method. Appl. Mech. Eng., 199, 1922-1936. https://doi.org/10.1016/j.cma.2010.01.021
- Du, C.B, Jiang, S.Y., Qin, W., Xu, H. and Lei, D. (2012), "Reconstruction of internal structures and numerical simulation for concrete composites at mesoscale", Comput. Concrete, 10(2), 135-147. https://doi.org/10.12989/cac.2012.10.2.135
- Erdogan, F. and Sih, G.C. (1963), "On the crack extension in plane loading and transverse shear", J. Basic Eng., 85, 519-527. https://doi.org/10.1115/1.3656897
- Haboussa, D., Gregoire, D., Elguedj, T., Maigre, H. and Combescure, A. (2011), "X-FEM analysis of the effects of holes or other cracks on dynamic crack propagations", Int. J. Numer. Method. Eng., 86, 618-636. https://doi.org/10.1002/nme.3128
- Kim, J., Zi, G., Van, S.N., Jeong, M.C., Kong, J.S. and Kim, M.S. (2011), "Fatigue life prediction of multiple site damage based on probabilistic equivalent initial flaw model", Struct. Eng. Mech., 38(4), 443-457. https://doi.org/10.12989/sem.2011.38.4.443
- Liao, J.H. and Zhuang, Z. (2012), "A Lagrange-multiplier-based XFEM to solve pressure Poisson equations in problems with quasi-static interfaces", SCIENCE CHINA Phy., Mech. Astron., 55(4), 693-705. https://doi.org/10.1007/s11433-012-4664-2
- Mayer, U.M., Popp, A., Gerstenberger, A. and Wall, W.A. (2010), "3D fluid-structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach", Comput. Mech., 46, 53-67. https://doi.org/10.1007/s00466-010-0486-0
- Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: basic theory and applications", Comput. Method. Appl. Mech. Eng., 39, 289-314.
- Moes, N., Cloirec, M., Cartraud, P. and Remacle, J.F. (2003), "A computational approach to handle complex microstructure geometries", Comput. Method. Appl. Mech. Eng., 192(28-30), 3163-3177. https://doi.org/10.1016/S0045-7825(03)00346-3
- Mohammadi, S. (2008), Extended finite element method, Blackwell Publishing Ltd, Oxford, UK.
- Osher, S. and Sethian, J.A. (1988), "Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations", J. Comput. Phys., 79(1), 12-49. https://doi.org/10.1016/0021-9991(88)90002-2
- Rice, J.R. (1968), "A path independent integral and the approximate analysis of strain concentrations by notches and cracks", J. Appl. Mech., 35, 379-386. https://doi.org/10.1115/1.3601206
- Singh, I.V., Mishra, B.K., Bhattacharya, S. and Patil, R.U. (2012), "The numerical simulation of fatigue crack growth using extended finite element method", Int. J. Fatigue, 36, 109-119. https://doi.org/10.1016/j.ijfatigue.2011.08.010
- Singh, I.V., Mishra, B.K. and Bhattacharya, S. (2011), "XFEM simulation of cracks, holes and inclusions in functionally graded materials", Int. J. Mech. Mater. Des., 7, 199-218. https://doi.org/10.1007/s10999-011-9159-1
- Stolarska, M. and Chopp, D.L. (2003), "Modeling thermal fatigue cracking in integrated circuits by level sets in the extended finite element method", Int. J. Numer. Method. Eng., 41, 2381-2410.
- Sukumar, N., Chopp, D.L., Moes, N. and Belytschkoc, T. (2001), "Modeling holes and inclusions by level sets in the extended finite element method", Comput. Method. Appl. Mech. En.g, 190(46-47), 6183-6200. https://doi.org/10.1016/S0045-7825(01)00215-8
- Sukumar, N. and Prevost, J.H. (2003), "Modeling quasi-static crack growth with the extended finite element method, Part I: Computer implementation", Int. J. Solid. Struct., 40, 7513-7537. https://doi.org/10.1016/j.ijsolstr.2003.08.002
- Sun, H., Waisman, H. and Betti, R. (2013), "Nondestructive identification of multiple flaws using XFEM and a topologically adapting artificial bee colony algorithm", Int. J. Numer. Method. Eng., 95, 871-900. https://doi.org/10.1002/nme.4529
- Wu, Z.J. and Wong, L.N.Y. (2013), "Modeling cracking behavior of rock mass containing inclusions using the enriched numerical manifold method", Eng. Geol., 162, 1-13. https://doi.org/10.1016/j.enggeo.2013.05.001
- Yan, Y. and Park, S. (2008), "An extended finite element method for modeling near-interfacial crack propagation in a layered structure", Int. J. Solid. Struct., 45, 4756-4765. https://doi.org/10.1016/j.ijsolstr.2008.04.016
- Ye, C., Shi, J. and Cheng, G.J. (2012), "An eXtended Finite Element Method (XFEM) study on the effect of reinforcing particles on the crack propagation behavior in a metal-matrix composite", Int. J. Fatigue, 44, 151-156. https://doi.org/10.1016/j.ijfatigue.2012.05.004
Cited by
- XFEM for fatigue and fracture analysis of cracked stiffened panels vol.57, pp.1, 2016, https://doi.org/10.12989/sem.2016.57.1.065
- Crack propagation and deviation in bi-materials under thermo-mechanical loading vol.50, pp.4, 2014, https://doi.org/10.12989/sem.2014.50.4.441
- Damage Tolerant Analysis of Cracked Al 2024-T3 Panels repaired with Single Boron/Epoxy Patch vol.99, pp.2, 2018, https://doi.org/10.1007/s40030-018-0279-6
- Effect of normal load on the crack propagation from pre-existing joints using Particle Flow Code (PFC) vol.19, pp.1, 2014, https://doi.org/10.12989/cac.2017.19.1.099
- Study on dynamic interaction between crack and inclusion or void by using XFEM vol.63, pp.3, 2017, https://doi.org/10.12989/sem.2017.63.3.329
- Fracture behavior modeling of a 3D crack emanated from bony inclusion in the cement PMMA of total hip replacement vol.66, pp.1, 2014, https://doi.org/10.12989/sem.2018.66.1.037
- Calculation of dynamic stress intensity factors and T-stress using an improved SBFEM vol.66, pp.5, 2014, https://doi.org/10.12989/sem.2018.66.5.649
- Method using XFEM and SVR to predict the fatigue life of plate-like structures vol.73, pp.4, 2014, https://doi.org/10.12989/sem.2020.73.4.455
- Numerical study of edge crack interaction with inclusion and void of an isotropic plate under different loadings by extended finite element method vol.814, pp.None, 2020, https://doi.org/10.1088/1757-899x/814/1/012017
- Composite coating effect on stress intensity factors of aluminum pressure vessels with inner circumferential crack by X-FEM vol.194, pp.no.pb, 2014, https://doi.org/10.1016/j.ijpvp.2021.104445