References
- Ahmed, K.M. (1971), "Free vibration of curved sandwich beams by the method of finite elements", J. Sound. Vib., 18, 61-74. https://doi.org/10.1016/0022-460X(71)90631-6
- Apetre, N.A., Sankar, B.V. and Ambur, D.R. (2006), "Low-velocity impact of sandwich beams with functionally graded core", Int. J. Solid. Struct., 43(9), 2479-2496. https://doi.org/10.1016/j.ijsolstr.2005.06.003
- Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007
- Auciello, N.M. and Rosa, M.A. (1994), "Free vibrations of circular arches: a review", J. Sound. Vib., 176, 433-458. https://doi.org/10.1006/jsvi.1994.1388
- Bao, G. and Wang, L. (1995), "Multiple cracking in functionally graded ceramic/metal coatings", Int. J. Solid. Struct., 32, 2853-2871. https://doi.org/10.1016/0020-7683(94)00267-Z
- Balasubramanian, T.S. and Prathap, G. (1989), "A field consistent higher-order curved beam element for static and dynamic analysis of stepped arches", J. Comput. Struct., 33, 281-288. https://doi.org/10.1016/0045-7949(89)90151-X
- Birman, V. (1995), "Stability of functionally graded hybrid composite plates", Compos. Eng., 5, 913-921. https://doi.org/10.1016/0961-9526(95)00036-M
- Chi, S.H. and Chung, Y.L. (2003), "Cracking in coating substrate composites of multi layered and sigmoid FGM coatings", Eng. Fract. Mech., 70, 1227-1243. https://doi.org/10.1016/S0013-7944(02)00114-5
- Eisenberger, M. and Efraim, E. (2001), "In-plane vibrations of shear deformable curved beams", Int. J. Numer. Meth. Eng., 52, 1221-1234. https://doi.org/10.1002/nme.246
- Garg, A.K., Khare, R.K. and Kant, T. (2006), "Higher-order closed-form solutions for free vibration of laminated composite and sandwich shells", J. Sandwich Struct. Mater., 8(3), 205-235. https://doi.org/10.1177/1099636206062569
- Golmakani, M.E. and Kadkhodayan, M.E. (2011), "Nonlinear bending analysis of annular FGM plates using higher-order shear deformation plate theories", Compos. Struct., 93, 973-982. https://doi.org/10.1016/j.compstruct.2010.06.024
- Kang, B., Riedel, C.H. and Tan, C.A. (2003), "Free vibration analysis of planar curved beams by wave propagation", J. Sound. Vib., 260, 19-44. https://doi.org/10.1016/S0022-460X(02)00898-2
- Henrych, J. (1981), The Dynamics of Arches, Elsevier Frames, New York.
- Khdeir, A.A. and Reddy, J.N. (1997), "Free and forced vibration of cross-ply laminated composite shallow arches", Int. J. Solid. Struct., 34, 1217-1234. https://doi.org/10.1016/S0020-7683(96)00095-9
- Kiani, Y., Akbarzadeh, A.H., Chen, Z.T. and Eslami, M.R. (2012), "Static and dynamic analysis of an FGM doubly curved panel resting on the Pasternak type elastic foundation", Compos. Struct., 94, 2474-2484. https://doi.org/10.1016/j.compstruct.2012.02.028
- Koizumi, M. (1993), "The concept of FGM ceramic transactions: functionally gradient materials", 34, 3-10.
- Khalili, S.M.R., Tafazoli, S. and Malekzadeh Fard, K. (2011), "Free vibrations of laminated composite shells with distributed uniformly attached mass using higher order shell theory including stiffness effect", J. Sound. Vib., 330(26), 6355-6371. https://doi.org/10.1016/j.jsv.2011.07.004
- Krishnan, A, Dharmaraj, S. and Suresh, Y.J. (1995), "Free vibration studies of arches", J. Sound. Vib., 186, 856-863. https://doi.org/10.1006/jsvi.1995.0493
- Krishnan, A. and Suresh, Y.J. (1998), "A simple cubic linear element for static and free vibration analyses of curved beams", J. Comput. Struct., 68, 473-489. https://doi.org/10.1016/S0045-7949(98)00091-1
- Li, X.F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams" , J. Sound. Vib., 318, 1210-29. https://doi.org/10.1016/j.jsv.2008.04.056
- Lu, Q. and Lu, C.F. (2008), "Exact two-dimensional solutions for in-plane natural frequencies of laminated circular arches", J. Sound. Vib., 318, 982-990. https://doi.org/10.1016/j.jsv.2008.05.011
- Malekzadeh, P. (2009), "Two-dimensional in-plane free vibrations of functionally graded circular arches with temperature-dependent properties", Compos. Struct., 91, 38-47. https://doi.org/10.1016/j.compstruct.2009.04.034
- Malekzadeh, P., Golbahar Haghighi, M.R. and Atashi, M.M. (2010), "Out of plane free vibration of functionally graded circular curved beam in thermal environment", Compos. Struct., 92, 541-552. https://doi.org/10.1016/j.compstruct.2009.08.040
- Marur, S.R. and Kant, T. (2008), "Free vibration of higher-order sandwich and composite arches, Part I: formulation" , J. Sound. Vib., 310(1-2), 91-109. https://doi.org/10.1016/j.jsv.2007.07.084
- Mori, T. and Tanaka, K. (1973), "Average stress in the matrix and average elastic energy of materials with misfitting inclusions", Acta Metall., 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
- Qatu, M.S. (1993), "Theories and analysis of thin and moderately thick laminated composite curved beams", Int. J. Solid. Struct., 30(3), 2743-2756. https://doi.org/10.1016/0020-7683(93)90152-W
- Sakiyama, T., Matsuda, H. and Morita, C. (1997), "Free vibration analysis of sandwich arches with elastic or visco elastic core and various kinds of axis shape and boundary conditions", J. Sound. Vib., 203, 505-522. https://doi.org/10.1006/jsvi.1996.0900
- Sankar, B.V. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696. https://doi.org/10.1016/S0266-3538(01)00007-0
- Shen, H.S. (2009), Functionally Graded Materials-Nonlinear Analysis of Plates and Shells, CRC Press.
- Tseng, Y.P., Huang, C.S. and Kao, M.S. (2000), "In-plane vibration of laminated curved beams with variable curvature by dynamic stiffness analysis", J. Compos. Struct., 50, 103-114. https://doi.org/10.1016/S0263-8223(00)00003-9
Cited by
- Free vibration of functionally graded thin elliptic plates with various edge supports vol.53, pp.2, 2015, https://doi.org/10.12989/sem.2015.53.2.337
- Dynamic analysis of helicoidal bars with non-circular cross-sections via mixed FEM vol.57, pp.2, 2016, https://doi.org/10.12989/sem.2016.57.2.221
- New enhanced higher order free vibration analysis of thick truncated conical sandwich shells with flexible cores vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.719
- A novel shear and normal deformation theory for hygrothermal bending response of FGM sandwich plates on Pasternak elastic foundation vol.67, pp.3, 2014, https://doi.org/10.12989/sem.2018.67.3.219
- Analytical, numerical and experimental investigation of low velocity impact response of laminated composite sandwich plates using extended high order sandwich panel theory vol.68, pp.3, 2018, https://doi.org/10.12989/sem.2018.68.3.325
- Dynamic instability and free vibration behavior of three-layered soft-cored sandwich beams on nonlinear elastic foundations vol.72, pp.4, 2014, https://doi.org/10.12989/sem.2019.72.4.525
- Free Vibration Analysis of a Functionally Graded Material Coated Aluminum Beam vol.58, pp.2, 2014, https://doi.org/10.2514/1.j059002
- Elastic Wave Characteristics of Graphene Reinforced Polymer Nanocomposite Curved Beams Including Thickness Stretching Effect vol.12, pp.10, 2014, https://doi.org/10.3390/polym12102194