Abstract
Surveillance cameras in national border and coastline area often occur the video distortion because of rapidly changing weather and light environments. It is positively necessary to enhance the distorted video quality for keeping surveillance. In this paper, we propose an adaptive video enhancement algorithm in the various environment changes. To solve an unstable performance problem of the existing method, the proposed method is based on Retinex algorithm and uses enhanced curves which is adapted in foggy and low-light conditions. In addition, we mixture the weighted HSV color model to keep color constancy and reduce noise to obtain clear images. As a results, the proposed algorithm improves the performance of well-balanced contrast enhancement and effective color restoration without any quality loss compared with the existing algorithm. We expect that this method will be used in surveillance camera systems and offer help of national defence with reliability.
국경 GOP(General Out Post)나 해안선 지역에 설치되어 운용되는 국방용 감시카메라는 급변하는 기상 및 조명환경에 의해 영상의 화질이 왜곡되고 열화되는 현상이 빈번하게 발생한다. 본 논문에서는 이러한 기상 및 조명환경 변화에 적응적인 화질개선 알고리즘을 제안한다. 기존 화질개선 알고리즘은 급변하는 환경조건에서 영상에 따라 극심한 성능편차를 보이는 문제점이 있는데, 이를 해결하기 위해 레티넥스(Retinex) 모델을 근간으로 환경변화에 적응적인 보정곡선을 이용하여 안개 및 저조도 환경에서 영상의 가시성을 향상시켜 높은 대비와 색상을 자연스럽게 재현하였고 실시간 환경변화에 적응토록 하였다. 또한, HSV 색모델을 가중 혼합하여 색 항상성 (Color Constancy)을 유지시켰으며, 개선과정 중 잡음(Noise)을 제거하여 보다 선명한 영상을 출력토록 하였다. 제안 알고리즘은 실험을 통해 기존 알고리즘 대비 주관적 평가인 MOS 1단계 향상효과 및 객관적 평가인 PSNR 15% 성능향상의 우수성을 입증하였다. 향후 국방감시 카메라 및 시스템에 적용되어 GOP나 해안선 지역의 열악한 기상조건으로부터 열화된 영상을 개선하여 적 침투 및 경계감시 식별에 도움을 주어 시스템의 신뢰성 향상에 기여할 것으로 기대한다.