DOI QR코드

DOI QR Code

폐쇄형 접속 방식의 소형셀 네트워크를 위한 동적 채널 할당 알고리즘

Dynamic Channel Allocation in Closed-Access Small Cell Networks

  • 문철 (한국교통대학교 정보통신공학과) ;
  • 조한신 (한밭대학교 전자.제어공학과)
  • 투고 : 2013.10.04
  • 심사 : 2013.12.16
  • 발행 : 2014.01.31

초록

기존 매크로셀 내에 소형셀을 추가하여 전체 시스템의 용량을 개선하는 연구에 대한 관심이 높다. 소형셀에 허가된 사용자만 접속할 수 있는 폐쇄형 접속 방식의 경우, (동일한 주파수 채널을 사용하는) 인접한 매크로셀 사용자의 성능저하가 불가피 하다. 본 논문에서는 빌딩 내에 다수의 소형셀 기지국이 분포하는 환경에서, 해당 빌딩에 인접한 매크로셀 사용자의 성능저하를 우선적으로 최소화하며, 다음으로 빌딩 내 소형셀 기지국 간의 간섭전력을 최소화하는 동적 주파수 채널 할당 알고리즘을 제안한다. 매크로셀 내 빌딩(소형셀)의 위치에 따라 인접한 매크로셀 사용자가 겪는 간섭전력이 변한다. 제안하는 알고리즘을 통해 소형셀은 이러한 위치에 따른 간섭영향의 변화에 적응적으로 스스로 주파수 채널을 선택할 수 있다. 소형셀이 시간에 따른 주변 간섭환경의 변화에 따라 최적의 주파수 채널을 할당할 수 있는 간단하고 실용적인 방법을 제안했다는 것이 본 연구의 가장 큰 기술적 기여이다. 모의실험을 통해 제안한 채널 할당 기법은 매크로셀의 성능개선에 효과적이며, 소형셀은 달성 가능한 최대 처리용량 대비 최대 81%를 제공할 수 있음을 확인하였다.

Operating small cell with existing macro cell is of interest in wireless communication technology to enhance network capacity. Closed-access small cell allows the access of users registered in it and causes severe interference to nearby users connected to macrocell. We propose a dynamic channel allocation for small cells in the same building that first aim to minimize call-drop of the nearby macrocell users, and then want to reduce interferences between the small cells. Since the interference effect of small cells on the nearby macrocell users mainly depends on the small cells' position, the proposed algorithm includes a self-configuration to flexibly allocate frequency channels according to the variation of downlink quality of the macrocell users. Furthermore the algorithm is very simple and practical, which is main contribution of this paper. We observe that the proposed algorithm provides 82-94% of maximum achievable throughput.

키워드

참고문헌

  1. V. Chandrasekhar, J. G. Andrews, and A. Gatherer, "Femtocell networks: a survey," IEEE Commun. Mag., vol.46, no.9, pp. 59-67, Sept. 2008. https://doi.org/10.1109/MCOM.2008.4623708
  2. A. Ghosh et al., "Heterogeneous Cellular Networks: From Theory to Practice," IEEE Commun. Mag., vol. 50, no. 6, pp. 54-64, Jun. 2012.
  3. T. Q. S. Quek, G. de la Roche, and I. Guvenc, Small cell networks: Deployment, PHY techniques, and resource management, Cambridge University Press, Jun. 2013.
  4. H.-S. Jo, Y. J. Sang, P. Xia, and J. G. Andrews, "Heterogeneous cellular networks with flexible cell association: a comprehensive downlink SINR analysis," IEEE Trans. Wireless Commun., vol.11, no.10, pp. 3484-3495, Oct. 2012. https://doi.org/10.1109/TWC.2012.081612.111361
  5. T-Macro, "Verizon Wireless soon will launch Samsung Ubicell," Oct. 2008. from http://www.cellphonesignal.com/verizon-wireless-soon-will-launch-samsung-ubicell/
  6. H.-S. Jo, C. Mun, J. Moon, and J.-G. Yook, "Interference mitigation using uplink power control for Two-Tier femtocell networks," IEEE Trans. Wireless Commun., Vol. 8, No. 10, pp. 4906-4910, Oct. 2009. https://doi.org/10.1109/TWC.2009.080457
  7. H.-S. Jo, C. Mun, J. Moon, and J.-G. Yook, "Self-optimized coverage coordination in femtocell networks," IEEE Trans. Wireless Commun., vol. 9, no. 10, pp. 2977-2982, Oct. 2010. https://doi.org/10.1109/TWC.2010.090210.081313
  8. V. Chandrasekhar, M. Kountouris, and J. G. Andrews, "Coverage in multi-antenna two-tier networks," IEEE Trans. Wireless Commun., vol. 8, no. 10, pp. 5314-5327, Oct. 2009. https://doi.org/10.1109/TWC.2009.090241
  9. H. Jung and J. Lee, "Downlink power allocation of the OFDMA femtocell for inter-cell interference mitigation," J. KICS, vol. 35, no. 8, pp. 743-751, Aug. 2010.
  10. S.-J. Lee, S.-Y. Kim, H.-W. Lee, S.-W. Ryu, and C.-H. Cho, "Adaptive power control schemes for interference mitigation in LTE femtocell networks," J. KICS, vol. 37, no. 8, pp. 648-660, Aug. 2012. https://doi.org/10.7840/kics.2012.37A.8.648
  11. I. Guvenc, M.R. Jeong, F. Watanabe, and H. Inamura, "A hybrid frequency assignment for femtocells and coverage area analysis for co-channel operation," IEEE Commun. Lett., vol. 12, no. 12, pp. 880-882, Dec. 2008. https://doi.org/10.1109/LCOMM.2008.081273
  12. D. Lopez-Perez, A. Ladanyi, A. Juttner, and J. Zhang, "OFDMA femtocells: A self-organizing approach for frequency assignment ," in Proc. IEEE 20th Int'l Symp. on Personal, Indoor and Mobile Radio Commun., pp. 2202-2207, Sep. 2009.
  13. V. Chandrasekhar and J. G. Andrews, "Spectrum allocation in two-tier networks," IEEE Trans. Commun., vol. 57, no. 10, pp. 3059-3068, Oct. 2009. https://doi.org/10.1109/TCOMM.2009.10.080529
  14. S.-J. Kim, I. Cho, Y.-K. Kim, and C.-H. Cho, "Dynamic channel assignment scheme using graph coloring in femtocell networks," J. KICS, vol. 38, no. 4, pp. 257-265, Apr. 2013. https://doi.org/10.7840/kics.2013.38B.4.257
  15. JPM Torregoza, R. Enkhbat, and W. J. Hwang, "Joint power control, base station assignment, and channel assignment in cognitive femtocell networks," EURASIP J. Wirelless Commun. Netw., vol. 2010, pp. 1-12, Jan. 2010.
  16. S. Al-Rubaye, A. Al-Dulaimi, and J. Cosmas, "Cognitive femtocell," IEEE Veh. Technol. Mag., vol. 6, no. 1, pp. 44-51, Mar. 2011.
  17. H.-S. Jo, "Codebook-based precoding for SDMA-OFDMA with spectrum sharing," J. ETRI, vol. 33, no. 6, pp. 831-840, Nov. 2011. https://doi.org/10.4218/etrij.11.0111.0078
  18. H.-S. Jo, P. Xia, and J. G. Andrews, "Open, closed, and shared access femtocells in the downlink," EURASIP J. Wireless Commun. and Netw., 2012:363, Dec. 2012. https://doi.org/10.1186/1687-1499-2012-363
  19. 3GPP-3GPP2 Spatial Channel Model Ad-Hoc Group, "Spatial Channel Model Text, in SCM-134," Apr. 2003.
  20. ITU-R Rec M.1225: "Guidelines for evaluation of radio transmission technologies for IMT-2000," Feb. 1997.
  21. K.-C. Shin, S.-B. Im, K.-M. Ok, and H.-J. Choi, "A design of initial cell searcher for 3GPP LTE downlink system," J. KICS, vol. 36, no. 1, pp. 21-28, Jan. 2013.
  22. J.-I. Choi, J.-K. Nam, W.-K. Seo, and Y.-Z. Cho, "An efficient femto-cell scanning scheme using network assistance in ieee 802.16e system," J. KICS, vol. 33, no. 7, pp. 733-742, July 2013. https://doi.org/10.7840/KICS.2011.36B.1.21
  23. Y. J. Kim and Y. S. Cho, "Femtocell searching technique using synchronization signals for next-generation mobile communication systems," J. KICS, vol. 38A, no. 1, pp. 44-57, Jan. 2013. https://doi.org/10.7840/kics.2013.38A.1.44