DOI QR코드

DOI QR Code

전자 빔 조향 기생 배열 안테나를 사용한 빔 다이버시티 수신기

Beam Diversity Receiver Using 7-Element ESPAR Antenna

  • 투고 : 2013.10.11
  • 심사 : 2013.12.23
  • 발행 : 2014.01.31

초록

본 논문에서는 ESPAR 안테나를 사용하여 다이버시티 이득을 얻기 위한 수신기를 제안한다. 수신 신호의 방향이 추정될 경우 추정된 신호의 각에 근접하는 빔을 OFDM 심볼 주기 동안 순차적으로 형성하여 수신함으로써 다이버시티 이득을 얻는다. 제안하는 수신기는 다이버시티 이득을 얻기 위해 단 1개의 RF 체인을 사용한다. 그러나 이러한 방법으로 빔의 방향을 바꾸면서 신호를 수신 할 경우 신호의 스펙트럼이 확장되어 ICI(inter-channel interference)가 발생된다. 이러한 ICI는 주파수 영역의 등화기를 이용하여 등화 할 수 있다. 시뮬레이션 결과, 추정 된 DoA가 $60^{\circ}$, $120^{\circ}$일 때 OFDM 심볼 주기 동안 $60^{\circ}$의 빔과 $120^{\circ}$의 빔을 순차적으로 형성하여 신호를 수신한 결과 다이버시티 성능을 얻을 수 있는 것을 확인하였다.

In this paper, we propose receiver using ESPAR antenna for diversity gain. The proposed receiver receive signal by changing direction of beam pattern alternately in the OFDM symbol time period when DoA is estimated. In this way, the proposed receiver obtains diversity gain. The proposed receiver has single RF chain. If beam direction is changed alternately then it causes spectrum spread. And then, ICI occur because of spectrum spread. This interference can be equalized at the frequency domain equalizer such as ZF, MMSE and ML. In simulation, the proposed system receive signal using beam pattern of $60^{\circ}$ and beam pattern of $120^{\circ}$ alternately in OFDM symbol time period when it is assumed that DoA is $60^{\circ}$ and $120^{\circ}$. The performance results confirm that it is possible that the proposed receiver obtains diversity gain.

키워드

참고문헌

  1. G. L. Stuber, J. R. Barry, S. W. McLaughlin, Y. Li, M. -A. Ingram, and T. G. Pratt, "Broadband MIMO-OFDM wireless communications," in Proc. IEEE, vol. 92, no. 2, pp. 271-294, Feb. 2004. https://doi.org/10.1109/JPROC.2003.821912
  2. E. K. Al-Hussaini and A. Al-Bassiouni, "Performance of MRC diversity systems for the detection of signals with nakagami fading," IEEE Trans. Communications, vol. 33, no. 12, pp. 1315-1319, Dec. 1985. https://doi.org/10.1109/TCOM.1985.1096243
  3. S. Tsukamoto, and M. Okada. "Single-RF diversity Receiver for OFDM system using ESPAR antenna with alternate direction," Science 1 (2011): 1-2.
  4. K. Gyoda and T. Ohira, "Design of electronically steerable passive array radiator (ESPAR) antennas," in Proc. Antennas and Propagation Society Int'l Symp., Salt Lake City, UT, USA, vol. 2, pp. 922-925, Jul. 2000.
  5. T. Ohira and K. Gyoda, "Electronically steerable passive array radiator antennas for low-cost analog adaptive beamforming," in Proc. Phased Array Syst. and Technol., Dana Point, CA, USA, May 2000.
  6. C. Sun, H. Akifumi, T. Ohira, N. C. Karmakar, "Fast beamforming of electronically steerable parasitic array radiator antennas: theory and experiment," IEEE Trans. Antennas and Propagation, vol. 52, no. 7, pp. 1819-1832, July 2004. https://doi.org/10.1109/TAP.2004.831314
  7. R. Schlub, J. Lu, and T. Ohira, "Seven-element ground skirt monopole ESPAR antenna design from a genetic algorithm and the finite element method," IEEE Trans. Antennas and Propagation, vol. 51, no. 11, pp. 3033-3039, Nov. 2003. https://doi.org/10.1109/TAP.2003.818790
  8. Y. Ozaki, J. Ozawa, E. Taillefer, J. Cheng, and Y. Watanabe, "A simple DoA estimator using adjacent pattern power ratio with switched beam antenna," in Proc. 2010 Int'l Conf. Wireless Commun. and Signal Processing(WCSP), pp. 1-6, 21-23, Oct. 2010.
  9. T. H. Yoon, J. T. Pack, and E. K. Joo, "Analysis of Performance according to LDPC Decoding Algorithms," J. KICS, vol. 37, no. 11, pp. 972-978, Nov. 2012. https://doi.org/10.7840/kics.2012.37A.11.972