DOI QR코드

DOI QR Code

온라인 학습을 이용한 비전 기반의 차량 검출 및 추적

Vision-Based Vehicle Detection and Tracking Using Online Learning

  • 길성호 (서강대학교 전자공학과 Man Machine Interface 연구실) ;
  • 김경환 (서강대학교 전자공학과)
  • 투고 : 2013.12.03
  • 심사 : 2013.12.16
  • 발행 : 2014.01.31

초록

본 논문에서는 추적중인 차량의 외형 변화에 대해 온라인 학습 능력이 있는 비전 기반의 차량 검출 및 추적 시스템을 제안한다. 제안하는 시스템은 새로 검출된 차량의 연속된 프레임 간 움직임을 빠르고 강건하게 추정하기 위해 특징점 기반 추적 방법을 사용한다. 동시에 추적중인 차량에 대해 온라인 차량 검출기를 훈련시키고, 일시적인 차량 추적 실패 시 검출기의 결과를 이용해 추적기를 재초기화하여 강건한 추적을 가능하게 한다. 특히 차량 외형 모델의 업데이트 방법을 개선하여 시스템의 추적 성능을 높이고 처리시간을 단축시켰다. 다양한 주행환경에서 획득한 데이터세트를 사용하여 제안하는 시스템의 차량 검출 및 추적 성능을 평가하였다. 특히 우천 및 터널통과와 같은 악조건에서 기존의 방법에 비해 차량 추적 성능이 상당히 개선된 것을 증명하였다.

In this paper we propose a system for vehicle detection and tracking which has the ability to learn on-line appearance changes of vehicles being tracked. The proposed system uses feature-based tracking method to estimate rapidly and robustly the motion of the newly detected vehicles between consecutive frames. Simultaneously, the system trains an online vehicle detector for the tracked vehicles. If the tracker fails, it is re-initialized by the detection of the online vehicle detector. An improved vehicle appearance model update rule is presented to increase a tracking performance and a speed of the proposed system. Performance of the proposed system is evaluated on the dataset acquired on various driving environment. In particular, the experimental results proved that the performance of the vehicle tracking is significantly improved under bad conditions such as entering a tunnel and passing rain.

키워드

참고문헌

  1. Z. Sun, G. Bebis, and R. Miller, "On-road vehicle detection: A review," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 5, pp. 694-711, May 2006. https://doi.org/10.1109/TPAMI.2006.104
  2. P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features," in Proc. CVPR Conf., vol. I, pp. 511-518, 2001.
  3. J. R. Kim, S. J. Yu, K. A. Toh, D. H. Kim and S. Y. Lee, "Fast on-road vehicle detection using reduced multivariate polynomial classifier," J. KICS, vol. 37, no. 8, pp. 639-647, Aug. 2012. https://doi.org/10.7840/kics.2012.37A.8.639
  4. C. Caraffi, T. Vojir, J. Trefny, J. Sochman and J. Matas, "A system for real-time detection and tracking of vehicles from a single car-mounted camera," in Proc. ITSC Conf., pp. 975-982, Sept. 2012.
  5. S. Sivaraman and M. Trivedi, "Looking at vehicles on the road: A survey of vision-based vehicle detection, tracking, and behavior analysis," IEEE Trans. Intelligent Transportation Systems, pp. 1773-1795, Dec. 2013.
  6. W. Chang and C. Cho, "Online boosting for vehicle detection," IEEE Trans. Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 40, no. 3, pp. 892-902, Jun. 2010. https://doi.org/10.1109/TSMCB.2009.2032527
  7. X. Mei and H. Ling, "Robust visual tracking and vehicle classification via sparse representation," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 33, no. 11, pp. 2259-2272, Nov. 2011. https://doi.org/10.1109/TPAMI.2011.66
  8. Z. Kalal, K. Mikolajczyk, and J. Matas, "Tracking-Learning-Detection," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 34, no. 7, Jul. 2012.
  9. Z. Kalal, J. Matas, and K. Mikolajczyk, "P-N learning: Bootstrapping binary classifiers by structural constraints," in Proc. CVPR Conf., pp. 49-56, Jun. 2010.
  10. J. Y. Bouguet, "Pyramidal implementation of the Lucas Kanade feature tracker description of the algorithm," Technical Report, Intel Microprocessor Research Labs, 1999.
  11. J. Shi and C. Tomasi, "Good features to track," in Proc. CVPR Conf., pp. 593-600, Jun. 1994.
  12. F. Zheng and G. Webb, "A comparative study of semi-naive bayes methods in classification learning," in Proc. of the Fourth Australasian Data Mining Conference (AusDM05), pp. 141-156, Sydney, Dec. 2005.
  13. M. Ozuysal, P. Fua, and V. Lepetit, "Fast keypoint recognition in ten lines of code," in Proc. CVPR Conf., pp. 1-8, USA, Jun. 2007