DOI QR코드

DOI QR Code

Ultrafiltration as a pretreatment for seawater desalination: A review

  • Lau, W.J. (Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia) ;
  • Goh, P.S. (Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia) ;
  • Ismail, A.F. (Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia) ;
  • Lai, S.O. (Chemical Engineering Department, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman)
  • 투고 : 2013.10.24
  • 심사 : 2013.12.17
  • 발행 : 2014.01.25

초록

Reverse Osmosis (RO) desalination has gained wide and increasing acceptance around the world as a straightforward undertaking to alleviate the alarming water crisis. An enhanced monitoring of the quality of the water feeding in seawater RO (SWRO) plant through the application of an effective pretreatment option is one of the keys to the success of RO technology in desalination plants. Over the past 10 years, advances in ultrafiltration (UF) membrane technologies in application for water and wastewater treatment have prompted an impetus for using membrane pretreatment in seawater desalination plants. By integrating SWRO plant with UF pretreatment, the rate of membrane fouling can be significantly reduced and thus extend the life of RO membrane. With the growing importance and significant advances attained in UF pretreatment, this review presents an overview of UF pretreatment in SWRO plants. The advantages offered by UF as an alternative of pretreatment option are compared to the existing conventionally used technologies. The current progress made in the integration of SWRO with UF pretreatment is also highlighted. Finally, the recent advances pursued in UF technology is reviewed in order to provide an insight and hence path the way for the future development of this technology.

키워드

참고문헌

  1. Al-Sarkal, T. and Arafat, H.A. (2013), "Ultrafiltration versus sedimentation-based pretreatment in Fujairah-1 RO plant: Environmental impact study", Desalination, 317, 55-66. https://doi.org/10.1016/j.desal.2013.02.019
  2. Arthanareeswaran, G. and Thanikaivelan, P. (2010), "Fabrication of cellulose acetate-zirconia hybrid membranes for ultrafiltration applications: Performance, structure and fouling analysis", Sep. Purif. Technol., 74(2), 230-235. https://doi.org/10.1016/j.seppur.2010.06.010
  3. Asatekin, A., Kang, S., Elimelech, M. and Mayes, A.M. (2007), "Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives", J. Membr. Sci., 298(1-2), 136-146. https://doi.org/10.1016/j.memsci.2007.04.011
  4. Basri, H., Ismail, A.F. and Aziz, M. (2011), "Polyethersulfone (PES)-silver composite UF membrane: Effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity", Desalination, 273(1), 72-80. https://doi.org/10.1016/j.desal.2010.11.010
  5. Basri, H., Ismail, A.F. and Aziz, M. (2012), "Microstructure and anti-adhesion properties of PES/TAP/Ag hybrid ultrafiltration membrane", Desalination, 287, 71-77. https://doi.org/10.1016/j.desal.2011.09.031
  6. Bennett, A. (2012a), "Membrane technology: Developments in ultrafiltration technologies", Filtr. Separat., 49(6), 28-33.
  7. Bennett, A. (2012b), "Desalination: Developments in pre-treatment technology", Filtr. Separat., 49(5), 16-20.
  8. Bonnelye, V., Guey, L. and Del Castillo, J. (2008), "UF/MF as RO pretreatment: the real benefit". Desalination, 222, 59-65. https://doi.org/10.1016/j.desal.2007.01.129
  9. Chen, X., Su, Yi, Shen, F. and Wan, Y. (2011), "Antifouling ultrafiltration membranes made from PAN-b-PEG copolymers : Effect of copolymer composition and PEG chain length", J. Membr. Sci., 384(1-2), 44-51. https://doi.org/10.1016/j.memsci.2011.09.002
  10. Chen, Y., Dong, B.Z., Gao, N.Y. and Fan, J.C. (2007), "Effect of coagulation pretreatment on fouling of an ultrafiltration membrane", Desalination, 204(1-3), 181-188. https://doi.org/10.1016/j.desal.2006.04.029
  11. Cho, Y.H., Kim, H.W., Nam, S.Y. and Park, H.B. (2011), "Fouling-tolerant polysulfone-poly(ethylene oxide) random copolymer ultrafiltration membranes", J. Membr. Sci., 379(1-2), 296-306. https://doi.org/10.1016/j.memsci.2011.05.075
  12. D&WR (The International Desalination & Water Reuse Quarterly) (2012), X-Flow UF pretreatment chosen for Al Zawrah SWRO, n.d. International Desalination & Water Reuse Quarterly industry, Website http://www.desalination.biz/ (Posted on 6 March 2012)
  13. D&WR (The International Desalination & Water Reuse Quarterly) (2013), Ghana desalination to get inge UF pretreatment, website http://www.desalination.biz/ (Posted on 8 April 2013)
  14. Durham, B., Bourbigot, M.M. and Pankratz, T. (2001), "Membranes as pretreatment to desalination in wastewater reuse: Operating experience in the municipal and industrial sectors", Desalination, 138(1-3), 83-90. https://doi.org/10.1016/S0011-9164(01)00248-X
  15. Emadzadeh, D., Lau, W.J., Matsuura, T., Rahbari-Sisakht, M. and Ismail, A.F. (2014), "A novel thin film composite forward osmosis membrane prepared from PSf-$TiO_{2}$ nanocomposite substrate for water desalination", Chem. Eng. J., 237, 70-80. https://doi.org/10.1016/j.cej.2013.09.081
  16. Frenkel, V. and Lozier, J. (2009), "Conventional vs MF/UF pretreatment for SWRO desalination", PNWS AWWA Annual Conference, May.
  17. Filtration + Separation (2013), Large Seawater Desalination Contract Awarded, 50(3), p. 22.
  18. Galloway, M. and Mahoney, J. (2004), "Ultrafiltration for seawater reverse osmosis pretreatment", Membr. Technol., 2004(1), 5-8.
  19. Goh, P.S., Ismail, A.F. and Ng, B.C. (2013), "Carbon nanotubes for desalination: Performance evaluation and current hurdles", Desalination, 308, 2-14. https://doi.org/10.1016/j.desal.2012.07.040
  20. Greenlee, L.F., Lawler, D.F., Freeman, B.D., Marrot, B. and Moulin, P. (2009), "Reverse osmosis desalination: water sources, technology, and today's challenges", Water Res., 43(9), 2317-2348. https://doi.org/10.1016/j.watres.2009.03.010
  21. GWI (Global Water Intelligence) (2011-2012), IDA Desalination Yearbook.
  22. GWI (Global Water Intelligence) (2011), Tackling the Biofouling challenge, Issue 12(4).
  23. Hamid, N., Ismail, A.F., Matsuura, T., Zularisam, A.W., Lau, W.J., Yuliwati, E. and Abdullah, M.S. (2011), "Morphological and separation performance study of polysulfone/titanium dioxide (PSF/$TiO_{2}$) ultrafiltration membranes for humic acid removal", Desalination, 273(1), 85-92. https://doi.org/10.1016/j.desal.2010.12.052
  24. Hanft, S. (2010a), Ultrafiltration membranes: Technologies and the U.S. market, Report no. MST044C, BCC Research.
  25. Hanft, S. (2010b), Seawater and brackish water desalination, Report no. MST052B, BCC Research.
  26. Huang, J., Arthanareeswaran, G. and Zhang, K. (2012), "Effect of silver loaded sodium zirconium phosphate (nanoAgZ) nanoparticles incorporation on PES membrane performance", Desalination, 285, 100-107. https://doi.org/10.1016/j.desal.2011.09.040
  27. Hyflux Ltd. (2013), Product bulletin - Kristal UF membrane.
  28. Jamshidi Gohari, R., Lau, W.J., Matsuura, T. and Ismail, A.F. (2013), "Effect of surface pattern formation on membrane fouling and its control in phase inversion process", J. Membr. Sci., 446, 326-331. https://doi.org/10.1016/j.memsci.2013.06.056
  29. Kim, J.J., Yoon, H., Hong, J., Lee, T. and Wilf, M. (2013), "Evaluation of new compact pretreatment system for high turbidity seawater: Fiber filter and ultrafiltration", Desalination, 313, 28-35. https://doi.org/10.1016/j.desal.2012.11.031
  30. Knops, F., Hoof, S. Van, Futselaar, H. and Broens, L. (2007), "Economic evaluation of a new ultrafiltration membrane for pretreatment of seawater reverse osmosis", Desalination, 203(1-3), 300-306. https://doi.org/10.1016/j.desal.2006.04.013
  31. Lee, K.P., Arnot, T.C. and Mattia, D. (2011), "A review of reverse osmosis membrane materials for desalination-Development to date and future potential", J. Membr. Sci., 370(1-2), 1-22. https://doi.org/10.1016/j.memsci.2010.12.036
  32. Li, N.N., Fane, A.G., Winston Ho, W.S. and Matsuura, T. (2008), Advanced Membrane Technology and Applications, John Wiley & Sons Inc., Hoboken, New Jersey.
  33. Li, S., Heijman, S.G.J., Verberk, J.Q.J.C., Amy, G.L. and Van Dijk, J.C. (2012), "Seawater ultrafiltration fouling control: Backwashing with demineralized water/SWRO permeate", Sep. Purif. Technol., 98, 327-336. https://doi.org/10.1016/j.seppur.2012.07.002
  34. Loeb, S. and Sourirajan, S. (1962), "Sea water demineralization by means of an osmotic membrane", Adv. Chem. Ser., 38, 117-132.
  35. Ma, X., Su, Y, Sun, Q., Wang, Y. and Jiang, Z, (2007), "Preparation of protein-adsorption-resistant polyethersulfone ultrafiltration membranes through surface segregation of amphiphilic comb copolymer", J. Membr. Sci., 292(1-2), 116-124. https://doi.org/10.1016/j.memsci.2007.01.024
  36. Macedonio, F., Drioli, E., Gusev, A.A., Bardow, A., Semiat, R. and Kurihara, M. (2012), "Efficient technologies for worldwide clean water supply", Chem. Eng. Process.: Process Intensification, 51, 2-17. https://doi.org/10.1016/j.cep.2011.09.011
  37. Membrane Technology (2011), Construction work starts on Singapore's second SWRO plant, Issue 8, p. 6.
  38. Membrane Technology (2012a), X-Flow UF membranes are selected for FEWA SWRO plant, Issue 10, pp. 6-7.
  39. Membrane Technology (2012b), Amiad filters protect desalination plant's UF membranes, Issue 8, pp. 3-4.
  40. Misdan, N., Lau, W.J. and Ismail, A. (2012), "Seawater Reverse Osmosis (SWRO) desalination by thin-film composite membrane-Current development, challenges and future prospects", Desalination, 287, 228-237. https://doi.org/10.1016/j.desal.2011.11.001
  41. Pearce, G. (2010), "SWRO pre-treatment: Cost and sustainability", Filtr. Separat., 47(2), 3638.
  42. Penate, B. and Garcia-Rodriguez, L. (2012), "Current trends and future prospects in the design of seawater reverse osmosis desalination technology", Desalination, 284, 1-8. https://doi.org/10.1016/j.desal.2011.09.010
  43. Pontie, M., Rapenne, S., Thekkedath, A., Duchesne, J., Jacquemet, V., Leparc, J. and Suty, H. (2005), "Tools for membrane autopsies and antifouling strategies in seawater feeds: A review", Desalination, 181(1-3), 75-90. https://doi.org/10.1016/j.desal.2005.01.013
  44. Razmjou, A., Resosudarmo, A., Holmes, R.L., Li, H., Mansouri, J. and Chen, V. (2012), "The effect of modified $TiO_2$ nanoparticles on the polyethersulfone ultrafiltration hollow fiber membranes", Desalination, 287, 271-280. https://doi.org/10.1016/j.desal.2011.11.025
  45. Reid, C.E. and Breton, C.J. (1958), "Water and ion flow across cellulosic membrane", J. Appl. Polym. Sci., 1 (2), 133-143.
  46. Schafer, A.I., Schwicker, U., Fischer, M.M., Fane, A.G. and Waite, T.D. (2000), "Microfiltration of colloids and natural organic matter", J. Membr. Sci., 171(2), 151-172. https://doi.org/10.1016/S0376-7388(99)00286-0
  47. Stedman, L. (2013), System Control for Saudi Desalination, WATER21, International Water Association (IWA), p. 30.
  48. Stover, R.L. (2009), "Evolution of energy consumption in seawater reverse osmosis", Desalination and Water Reuse, 19, 27-30.
  49. Su, Y.-L., Cheng, W., Li, C. and Jiang, Z. (2009), "Preparation of antifouling ultrafiltration membranes with poly(ethylene glycol)-graft-polyacrylonitrile copolymers", J. Membr. Sci., 329(1-2), 246-252. https://doi.org/10.1016/j.memsci.2009.01.002
  50. Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S. and Astinchap, B. (2012), "Novel antibifouling nanofiltration polyethersulfone membrane fabricated from embedding $TiO_2$ coated multiwalled carbon nanotubes", Sep. Purif. Technol., 90, 69-82. https://doi.org/10.1016/j.seppur.2012.02.014
  51. Voutchkov, N. (2010), "Considerations for selection of seawater filtration pretreatment system", Desalination, 261(3), 354-364. https://doi.org/10.1016/j.desal.2010.07.002
  52. Wangnick, K. (1990), 1990 IDA Worldwide Desalting Plants Inventory Report No.11, Wangnick Consulting, Germany.
  53. WDS (Water Desalination Report) (2012), China - SWRO expansion announced, Issue 48(14), pp. 1-4.
  54. Zhang, J., Gao, S., Zeng, H., Zhang, F., Li, Changzhen, Liu, Y., Fu, D. and Ye, C. (2006), "Pilot testing of two inside-out UF modules prior to RO for highturbidity seawater desalination", Desalination, 196(1-3), 66-75. https://doi.org/10.1016/j.desal.2005.11.020
  55. Zhao, S., Wang, P., Wang, C., Sun, X. and Zhang, L. (2012), "Thermostable PPESK/$TiO_2$ nanocomposite ultrafiltration membrane for high temperature condensed water treatment", Desalination, 299, 35-43. https://doi.org/10.1016/j.desal.2012.05.013
  56. Zhao, Y.-F., Zhu, L.-P., Yi, Z., Zhu, B.-K. and Xu, Y.-Y. (2013), "Improving the hydrophilicity and fouling-resistance of polysulfone ultrafiltration membranes via surface zwitterionicalization mediated by polysulfone-based triblock copolymer additive", J. Membr. Sci., 440, 40-47. https://doi.org/10.1016/j.memsci.2013.03.064
  57. Zularisam, A. W., Ismail, A. F. and Salim, R. (2006), "Behaviours of natural organic matter in membrane filtration for surface water treatment - A review", Desalination, 194(1-3), 211-231. https://doi.org/10.1016/j.desal.2005.10.030

피인용 문헌

  1. Effects of Inorganic Nano-Additives on Properties and Performance of Polymeric Membranes in Water Treatment vol.45, pp.2, 2016, https://doi.org/10.1080/15422119.2015.1068806
  2. Seawater reverse osmosis desalination plant at community-scale: Role of an innovative pretreatment on process performances and intensification vol.113, 2017, https://doi.org/10.1016/j.cep.2016.09.020
  3. Activated carbon selection for the adsorption of marine DOC and analysis of DOC fractionation vol.57, pp.53, 2016, https://doi.org/10.1080/19443994.2016.1156584
  4. Characterization and Seawater Filtration Performance of Commerical Microfiltration and Ultrafiltration Membranes vol.39, pp.9, 2017, https://doi.org/10.4491/KSEE.2017.39.9.542
  5. Membrane fouling in desalination and its mitigation strategies vol.425, 2018, https://doi.org/10.1016/j.desal.2017.10.018
  6. Scaling predictions in seawater reverse osmosis desalination vol.5, pp.3, 2014, https://doi.org/10.12989/mwt.2014.5.3.221
  7. Critical aspects of RO desalination: A combination strategy vol.401, 2017, https://doi.org/10.1016/j.desal.2016.06.033
  8. Modification of the desalination property of PAN-based nanofiltration membranes by a preoxidation method vol.357, 2015, https://doi.org/10.1016/j.desal.2014.12.004
  9. Effluents from copper industry: Improvised techniques vol.6, pp.2, 2015, https://doi.org/10.12989/mwt.2015.6.2.103
  10. Membrane processes for water recovery and decontamination vol.6, 2014, https://doi.org/10.1016/j.coche.2014.10.004
  11. Use of DPSIR Framework to Analyze Water Resources in Qatar and Overview of Reverse Osmosis as an Environment Friendly Technology pp.19447442, 2019, https://doi.org/10.1002/ep.13081
  12. Carbonate scale reduction in reverse osmosis membrane by CO2 in wastewater reclamation vol.8, pp.2, 2014, https://doi.org/10.12989/mwt.2017.8.2.125
  13. UF pretreatment at elevated temperature within the scheme of hybrid desalination: Performance and environmental impact vol.8, pp.3, 2014, https://doi.org/10.12989/mwt.2017.8.3.279
  14. Membrane Processes for Microplastic Removal vol.24, pp.22, 2014, https://doi.org/10.3390/molecules24224148
  15. Intermittent chlorination shifts the marine biofilm population on reverse osmosis membranes vol.10, pp.6, 2014, https://doi.org/10.12989/mwt.2019.10.6.395
  16. PV‐betriebene Umkehrosmoseanlage zur Meerwasserentsalzung – Modellierung und Analyse verschiedener Energieversorgungsvarianten vol.91, pp.12, 2014, https://doi.org/10.1002/cite.201900095
  17. 해수담수화 전처리공정 비교 및 적용 방법 vol.33, pp.6, 2019, https://doi.org/10.11001/jksww.2019.33.6.437
  18. Reuse potential of spent RO membrane for NF and UF process vol.11, pp.5, 2014, https://doi.org/10.12989/mwt.2020.11.5.323
  19. Construction of a composite microporous polyethylene membrane with enhanced fouling resistance for water treatment vol.618, pp.None, 2021, https://doi.org/10.1016/j.memsci.2020.118679
  20. Immobilization techniques of a photocatalyst into and onto a polymer membrane for photocatalytic activity vol.11, pp.12, 2021, https://doi.org/10.1039/d0ra10964a