DOI QR코드

DOI QR Code

Photovoltaic Characteristics of Low-density Concentration GaAs Solar Cells with/without Anti-reflective Coating

  • Noh, Sam Kyu (Nano Materials Evaluation Center, Korea Research Institute of Standards and Science) ;
  • Kim, Jong Soo (Department of Physics, Yeungnam University) ;
  • Kim, Jin Soo (Divsion of Advanced Materials Engineering, Chonbuk National University) ;
  • Yu, Jae Su (Department of Electronics and Radio Engineering, Kyung Hee University)
  • Received : 2014.01.08
  • Accepted : 2014.01.21
  • Published : 2014.01.30

Abstract

We have studied photovoltaic characteristics of single-junction GaAs solar cells with/without an $MgF_2/ZnS$ anti-reflective coating (ARC) illuminated by low-density concentration (<10 suns). By the ARC deposition, the short-circuit current density ($J_{SC}$) and the fill factor (FF) are increased by $5mA/cm^2$ and 5% at a standard illumination (1 sun), respectively, and the resulted conversion efficiency is enhanced by 45%. In contrast with the cell with no ARC showing a rapid degradation with increasing concentration power, the efficiency of ARC-deposited cell remains almost constant as ($17.7{\pm}0.3$)% regardless of the concentration. It informs that ARC treatment is very effective in GaAs concentrator solar cells.

Keywords

References

  1. J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2003).
  2. F. Dimroth and S. Kurtz, MRS Bull. 32, 230 (2007). https://doi.org/10.1557/mrs2007.27
  3. M A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovol: Res. Appl. 18, 144 (2010). https://doi.org/10.1002/pip.974
  4. J. -W. Kang, C. -H. Son, G. -S. Cho, J. H. Yoo, J. -S. Kim, C. -K. Park, and G. -C. Kwon, J. Korean Vac. Soc. 21, 62 (2012). https://doi.org/10.5757/JKVS.2012.21.1.62
  5. K. -S. Lee, Y. D. Chung, N. M. Park, D. H. Cho, K. H. Kim, J. Kim, S. J. Kim, Y. Kim, and S. K. Noh, J. Opt. Soc. Korea 14, 321 (2010). https://doi.org/10.3807/JOSK.2010.14.4.321
  6. F. O. Lenzmann and J. M. Kroon, Advancies in OptoElectronics 2007, 10 (2007).
  7. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, Appl. Phys. Lett. 90, 183516 (2007). https://doi.org/10.1063/1.2734507
  8. A. Luque and A. Marti, Phys. Rev. Lett. 78, 5014 (1997). https://doi.org/10.1103/PhysRevLett.78.5014
  9. B. Galiana, I. Rey-Stolle, M. Baudrit, I. Garcia, and C. Algora, Semicond. Sci. Technol. 21, 1387 (2006). https://doi.org/10.1088/0268-1242/21/10/003
  10. A. Khan, M. Yamaguchi, and T. Takamoto, Appl. Phys. Lett. 85, 3098 (2004). https://doi.org/10.1063/1.1802371
  11. M. -J. Yang and M. Yamaguchi, Sol. Ener. Mater. Sol. Cells 60, 19 (2000). https://doi.org/10.1016/S0927-0248(99)00055-0
  12. R. D. Schaller, M. Sykora, J. M. Pietryga, and V. I. Kilmov, Nano Lett. 6, 424 (2006). https://doi.org/10.1021/nl052276g
  13. M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, and A. J. Nozik, Nano Lett. 7, 2506 (2007). https://doi.org/10.1021/nl071486l
  14. A. Luque and A. Marti, Phys. Adv. Mater. 22, 160 (2010). https://doi.org/10.1002/adma.200902388
  15. S. P. Bremner, M. Y. Levy, and C. B. Honsberg, Appl. Phys. Lett. 92, 171110 (2008). https://doi.org/10.1063/1.2907493
  16. A. Marti, E. Antolin, E. Canovas, N. Lopez, P. G. Linares, A. Luque, C. R. Stanley, and C. D. Farmer, Thin Solid Films 516, 6716 (2008). https://doi.org/10.1016/j.tsf.2007.12.064
  17. Y. Okada, R. Oshima, and A. Takata, J. Appl. Phys. 106, 024306 (2009). https://doi.org/10.1063/1.3176903
  18. C. G. Bailey, D. V. Forbes, R. P. Raffaelle, and S. M. Hubbard, Appl. Phys. Lett. 98, 163105 (2011). https://doi.org/10.1063/1.3580765
  19. D. Zhou, P. E. Vullum, G. Sharma, S. F. Thomassen, R. Holmestad, T. W. Reenaas, and B. O. Fimland, Appl. Phys. Lett. 96, 083108 (2010). https://doi.org/10.1063/1.3309411
  20. D. Guimard, R. Morihara, D. Bordel, K. Tanabe, Y. Wakayama, M. Nishioka, and Y. Arakawa, Appl. Phys. Lett. 96, 203507 (2010). https://doi.org/10.1063/1.3427392
  21. K. A. Sablon, J. W. Little, K. A. Olver, Zh. M. Wang, V. G. Dorogan, Yu. I. Mazur, G. J. Salamo, and F. J. Towner, J. Appl. Phys. 108, 074305 (2010). https://doi.org/10.1063/1.3486014
  22. K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and K. Reinhardt, Nano Lett. 11, 2311 (2011). https://doi.org/10.1021/nl200543v
  23. T. Gu, M. A. El-Emawy, K. Yang, A. Stintz, and L. F. Lester, Appl. Phys. Lett. 95, 261106 (2009). https://doi.org/10.1063/1.3277149
  24. C. Y. Ngo, S. F. Yoon, W. K. Loke, T. K. Ng, S. J. Chua, J. Cryst. Growth 311, 1885 (2009). https://doi.org/10.1016/j.jcrysgro.2008.10.076
  25. S. J. Tark, M. G. Kang, S. Park, J. H. Jang, J. C. Lee, W. M. Kim, J. S. Lee, and D. Kim, Curr. Appl. Phys. 9, 1318 (2009). https://doi.org/10.1016/j.cap.2008.12.015
  26. J. W. Leem and J. S. Yu, Opt. Express 20, 26160 (2012). https://doi.org/10.1364/OE.20.026160
  27. Y. H. Ko, M. S. Kim, and J. S. Yu, J. Korean Vac. Soc. 20, 381 (2011). https://doi.org/10.5757/JKVS.2011.20.5.381
  28. D. -Y. Kong, D. -H. Kim, S. -H. Yun, Y. -H. Bae, I. -S. Yu, C. -S. Cho, and J. -H. Lee, J. Korean Vac. Soc. 20, 233 (2011). https://doi.org/10.5757/JKVS.2011.20.3.233
  29. S. Adachi, Properties of Group-IV, III-V and II-VI Semiconductors (John Wiley & Sons, Chichester, 2005), p. 7.