References
- Burt, J. M. and M. B. Garman, 1971. Conditional Monte Carlo: A simulation technique for stochastic network analysis. Management Science 18(3): 207-217. https://doi.org/10.1287/mnsc.18.3.207
- Dechter, R., and J. Pearl, 1989. Tree clustering for constraint networks. Artificial Intelligence 38(3): 353-366. https://doi.org/10.1016/0004-3702(89)90037-4
- Fefferman, C., 1970. Inequalities for strongly singular convolution operators. Acta Mathematica 124(1): 9-36. https://doi.org/10.1007/BF02394567
- Friedman, N.. 2004. Inferring Cellular Networks Using Probabilistic Graphical Models. Science 303.5659: 799-805. https://doi.org/10.1126/science.1094068
- Friedman, N., D. Geiger, and M. Goldszmidt, 1997. Bayesian Network Classifiers. Machine learning 29 (2-3): 131-163. https://doi.org/10.1023/A:1007465528199
- Girvan, M. and M. E. J Newman, 2002. Community structure in social and biological networks. Proceedings of the National Academy of Sciences 99(12): 7821-7826. https://doi.org/10.1073/pnas.122653799
- Gudkov, V., J. E. Johnson, and S. Nussinov, 2002. Graph equivalence and characterization via a continuous evolution of a physical analog. arXiv preprint condmat/ 0209112.
- Leskovec, J., K. J. Lang, and A. Dasgupta, 2007. Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics 6(1): 29-123.
- Leskovec, J., K. J. Lang, and M. Mahoney, 2010. Empirical comparison of algorithms for network community detection. Proceedings of the 19th international conference on World wide web, 631-640. New York, USA.
- Marcos, G. Q., L. Zhao, L. Ronaldo, and A. F. Roseli, 2008. Particle competition for complex network community detection. Chaos: An Interdisciplinary. Journal of Nonlinear Science 18(3): 033107-033107.
- Newman, M. E. J. and M. Girvan, 2004. Finding and evaluating community structure in networks. Physical Review E. 69(2): 026113. https://doi.org/10.1103/PhysRevE.69.026113
- O'Neil, R., 1963. Convolution operators and spaces. Duke Mathematical Journal 30(1): 129-142. https://doi.org/10.1215/S0012-7094-63-03015-1
- Peter, J. M., T. Richardson, K. Macon, A.P. Mason, and J. Onnela, 2010. Community Structure in Time- Dependent, Multiscale, and Multiplex Networks. Science 328(5980): 876-878. https://doi.org/10.1126/science.1184819
- Pothen, A., H. D. Simon, and K. P. Liou, 1990. Partitioning sparse matrices with eigenvectors of graphs. Journal on Matrix Analysis and Applications 11(3): 430-452. https://doi.org/10.1137/0611030
- Reichardt, J. and S. Bornoholdt, 2004. Detecting fuzzy community structures in complex networks with a Potts model. Physical Review Letters 93(21): 218701. https://doi.org/10.1103/PhysRevLett.93.218701
- Reichardt, J. and S. Bornoholdt, 2006. Statistical mechanics of community detection. Physical Review Letters 74(1): 016110.
- Ringer, L. J., 1971. A statistical theory for PERT in which completion times of activities are inter-dependent. Management Science 17(11): 717-723. https://doi.org/10.1287/mnsc.17.11.717
- Romualdo, P. and V. Alessandro, 2001. Epidemic spreading in scale-free networks. Statistical Mechanics 86(14): 3200-3203.
- Roy, S., D. Saha, D. Bandyopadhyay, T. Ueda, and S. Tanaka, 2003. A network-aware MAC and routing protocol for effective load balancing in ad hoc wireless networks with directional antenna. Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing 88-97. New York, USA.
- Wu, F. and B.A. Huberman, 2004. Finding communities in linear time: a physics approach. The European Physical Journal B 38(2): 331-338. https://doi.org/10.1140/epjb/e2004-00125-x
- Zhou, H., 2003. Distance, dissimilarity index, and network community structure. Physical Review E. 67(6): 061901. https://doi.org/10.1103/PhysRevE.67.061901