DOI QR코드

DOI QR Code

Determining the Number of Risk Level Using Real-time Sensitivities in the Probabilistic Maritime Risk Evaluation

확률기반 해상위기평가에서 실시간 민감도를 이용한 위기수준의 단계 구분 수 결정에 관한 연구

  • 강상근 (목포해양대학교 해상운송시스템학부)
  • Received : 2014.11.12
  • Accepted : 2014.12.26
  • Published : 2014.12.31

Abstract

The result of probabilistic maritime risk evaluation is represented by the probability(P=0.0~1.0) These results are shown by an index using Risk Acceptance Criteria(RAC) to base the evaluation generally to know the risk level easily. Current RAC is divided into 3 steps, 5 steps, 7 steps, etc. Despite need to evaluate whether the number of RAC for risk evaluation is reasonable, there is not a related research yet. In this study, It was proposed the evaluation method to determine the optimum index number of RAC using the Sensitivity distribution characteristics and the Sensitivity by the index number of RAC. As application result from the proposed method for probabilistic risk evaluation data obtained from the prior studies, It could be determined the optimum index number of RAC by Sensitivity below 10 times and confirmed that the proposed method is reasonable by this study.

해상에서 발생하는 위기의 확률적인 평가결과는 확률(P=0.0~1.0)로 나타난다. 이러한 확률적인 위기평가결과는 위험한 정도를 쉽게 알기 위하여 일반적으로 평가의 기준이 되는 위기허용수준(Risk Acceptance Criteria, RAC)을 이용하여 지수(index)로 나타낸다. 현재 RAC은 3단계, 5단계, 7단계 등으로 구분하는데, 구분한 단계 수가 위기평가에 적합한지를 평가할 필요가 있음에도 불구하고 관련 연구가 전무한 실정이다. 본 연구에서는 RAC의 단계 구분 수에 따른 민감도(Sensitivity)와 민감도의 분포특성을 이용하여 최적의 RAC 구분 단계 수를 정할 수 있는 평가기법을 제안하였다. 사전 연구결과로부터 획득한 확률적인 위기평가 데이터에 대해서 제안한 기법을 적용한 결과, 민감도가 10배 이내로 형성되는 최적의 RAC 구분 단계 수를 결정할 수 있었고, 이를 통해서 제안한 방법의 유효성을 확인하였다.

Keywords

References

  1. Yim, J. B.(2009), Development of Quantative Risk assessment Methodology for Maritime Transpotation Accident of Merchant Ship, The Korean Society of Marine Environment and Safety, Vol. 33, No. 1, pp. 9-19.
  2. Amrozowicz, M. D., A. Brown and M. Golay(1997), A Probabilistic Analysis Of Tanker Groundings, 7th International Offshore and Polar Engineering Conference, Honolulu, Hawaii, pp. 1-19.
  3. Gang, S. G., J. Y. Jeong and J. B. Lim(2014), Applications of Ship Domain Theory to Identify Risky Sector in VTS Area, The Korean Society of Marine Environment and Safety, Vol. 20, No. 3, pp. 277-284. https://doi.org/10.7837/kosomes.2014.20.3.277
  4. Kaplan, S. and B. J. Garrick(1981), On The Quantitative Definition of Risk, Risk Analysis, Vol. 1, No. 1, pp. 11-27. https://doi.org/10.1111/j.1539-6924.1981.tb01350.x
  5. Fowler, T. G. and E. Sorgard(2000), Modeling Ship Transportation Risk, Risk Analysis, Vol. 20, No. 2, pp. 225-244. https://doi.org/10.1111/0272-4332.202022
  6. Yim, J. B.(2010), Development of Collision Risk Evaluation Model Between Passing Vessel and Mokpo Habour Bridge, Korean Institute of Journal of Navigation and Port Research, Vol. 34, No. 6, pp. 405-415. https://doi.org/10.5394/KINPR.2010.34.6.405
  7. Yim, J. B., W. J. Yang and H. T. Kim(2014), Marine Accident Analysis - A Guide to Analysis, Evaluation, Prediction and Management of Marine Accidents in the Maritime Transportations, Jeilkiheok, ISBN 978-89-97005-42-0, pp. 1-391.