DOI QR코드

DOI QR Code

Biphasic Activity of Chloroquine in Human Colorectal Cancer Cells

  • Park, Deokbae (Dept. of Histology, Jeju National University School of Medicine) ;
  • Lee, Youngki (Dept. of Histology, Jeju National University School of Medicine)
  • Received : 2014.11.10
  • Accepted : 2014.11.18
  • Published : 2014.12.31

Abstract

Autophagy is a homeostatic degradation process that is involved in tumor development and normal development. Autophagy is induced in cancer cells in response to chemotherapeutic agents, and inhibition of autophagy results in enhanced cancer cell death or survival. Chloroquine (CQ), an anti-malarial drug, is a lysosomotropic agent and is currently used as a potential anticancer agent as well as an autophagy inhibitor. Here, we evaluate the characteristics of these dual activities of CQ using human colorectal cancer cell line HCT15. The results show that CQ inhibited cell viability in dose- and time-dependent manner in the range between 20 to 80 uM, while CQ did not show any antiproliferative activity at 5 and 10 uM. Cotreatment of CQ with antitumor agent NVP-BEZ235, a dual inhibitor of PI3K/mTOR, rescued the cell viability at low concentrations meaning that CQ acted as an autophagy inhibitor, but CQ induced the lethal effect at high concentrations. Acridine orange staining revealed that CQ at high doses induced lysosomal membrane permeabilization (LMP). High doses of CQ produced cellular reactive oxygen species (ROS) and cotreatment of antioxidants, such as NAC and trolox, with high doses of CQ rescued the cell viability. These results suggest that CQ may exert its dual activities, as autophagy inhibitor or LMP inducer, in concentration-dependent manner.

Keywords

References

  1. Antunes F, Cadenas E, Brunk UT (2001) Apoptosis induced by exposure to a low steady-state concentration of $H_{2}O_{2}$ is a consequence of lysosomal rupture. Biochem J 356:549-555. https://doi.org/10.1042/0264-6021:3560549
  2. Aykin-Burns N, Ahmad IM, Zhu Y, Oberley L, Spitz DR (2009) Increased levels of superoxide mediate the differential susceptibility of cancer cells vs. normal cells to glucose deprivation. Biochem J 418:29-37. https://doi.org/10.1042/BJ20081258
  3. Bernard EM, Driel V, Lyon H, Hoogenraad DCJ, Anten S, Hansen U, Van Noorden CJF (1997) Expression of CuZnand Mn-superoxide dismutase in human colorectal neoplasms. Free Radic Biol Med 23:435-444. https://doi.org/10.1016/S0891-5849(97)00102-0
  4. Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27:6434-6451. https://doi.org/10.1038/onc.2008.310
  5. Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L, Houghton JA, Huang P, Giles FJ, Cleveland JL (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110:313-322. https://doi.org/10.1182/blood-2006-10-050260
  6. Chi S, Kitanaka C, Noguchi K, Mochizuki T, Nagashima Y, Shirouzu M (1999) Oncogenic Ras triggers cell suicide through the activation of caspase-independent cell death program in human cancer cells. Oncogene 18:2281-2290. https://doi.org/10.1038/sj.onc.1202538
  7. Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, Chen G, Mukherjee C, Shi Y, Gelinas C, Fan Y, Nelson DA, Jin S, White E (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51-64. https://doi.org/10.1016/j.ccr.2006.06.001
  8. Enzenmuller S, Gonzalez P, Debatin KM, Fulda S (2013) Chloroquine overcomes resistance of lung carcinoma cells to the dual PI3K/mTOR inhibitor PI103 by lysosomemediated apoptosis. Anticancer Drugs 24:14-19. https://doi.org/10.1097/CAD.0b013e32835a36db
  9. Firat E, Weyerbrock A, Gaedicke S, Grosu AL, Niedemann G (2012) Chloroquine or chloroquine-PI3K/Akt pathway inhibitor combinations strongly promote $\gamma$-radiationinduced cell death in primary stem-like glioma cells. Plos One 7:e47357. https://doi.org/10.1371/journal.pone.0047357
  10. Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, Kamphorst JA, Chen G, Lemons JMS, Karantza V, Collar HA, DiPaola RS, Gelinas C, Rabinowitz JD, White E (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 25:460-470. https://doi.org/10.1101/gad.2016311
  11. Hu YL, Jahangiri A, Delay M, Aghi MK (2012) Tumor cell autophagy as an adaptive response mediating resistance to treatments such as antiangiogenic therapy. Cancer Res 73:4294-4299.
  12. Kroemer G, Jaattela M (2005) Lysosomes and autophagy in cell death control. Nat Re Cancer 5:886-897. https://doi.org/10.1038/nrc1738
  13. Li J, Cheng C, Yang C, Ou Y, Wu M, Ko J (2013) Dual inhibitor of phosphoinositide 3-kinase/mammalian target of rapamycin NVP-BEZ235 effectively inhibits cisplatinresistant urothelial cancer cell growth through autophagic flux. Toxicol Lett 220:267-276. https://doi.org/10.1016/j.toxlet.2013.04.021
  14. Maira S, Stauffer F, Brueggen J, Furet P, Schnell J, Fritsch C (2008) Identification and characterization of NVPBEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther 7:1851-1863. https://doi.org/10.1158/1535-7163.MCT-08-0017
  15. Maycotte P, Aryal S, Cummings CT, Thorbum J, Morgan J, Thorbum A (2012) Chloroquine sensitizes breast cancer cells to chemotherapy independent of autophagy. Autophagy 8:200-212. https://doi.org/10.4161/auto.8.2.18554
  16. Mizushima N, Levine B (2010) Autophagy in mammalian development and differentiation. Nat Cell Biol 12:823-830. https://doi.org/10.1038/ncb0910-823
  17. Scherz-Schoual R, Shvet E, Fass E, Shorer H, Elazar Z (2007) Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749-1760. https://doi.org/10.1038/sj.emboj.7601623
  18. Seifried HE, Madonald SS, Anderson DE, Greenwalld P, Milner JA (2003) The antioxidant conundrum in cancer. Cancer Res 63:4295-4270.
  19. Seitz C, Hugle M, Crisfanon S, Tchoghandjian A, Fulda S (2013) The dual PI3K/mTOR inhibitor NVP-BEZ235 and chloroquine synergize to trigger apoptosis via mitochondrial-lysosomal cross-talk. Int J Cancer 132: 2682-2693. https://doi.org/10.1002/ijc.27935
  20. Song J, Kang JH, Kang HK, Kim K, Lee S, Choi D, Park D, Lee Y (2011) Mechanism of ethanol-induced purkinje cell death in developing rat cerebellum: its implication in apoptosis and oxidative damage. Dev Reprod 15: 205-213.
  21. Syelo J, Bricendo E, Lopez-Gozalez MA (2006) Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 144:337-343. https://doi.org/10.7326/0003-4819-144-5-200603070-00008
  22. Takeuchi H, Kondo Y, Fujiwara K, Kanajawa T, Aoki H, Mills GB, Kondo S (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res 65(8):3336-3346.
  23. Terman A, Kurz T, Gustafsson B, Brunk UT (2006) Lysosomal labilization. IUBMB Life 58:531-539. https://doi.org/10.1080/15216540600904885
  24. Xu C, Zhao L, Yue P, Fang G, Tao H, Owonikoko TK, Ramalinqam SS, Khuri FR, Sun SY (2011) Augmentation of NVP-BEZ235's anticancer activity against human lung cancer cells by blockage of autophagy. Cancer Biol Ther 12:549-555. https://doi.org/10.4161/cbt.12.6.16397
  25. Yang ZJ, Chee CE, Huang S, Sinicrope F (2011) The role of autophagy: therapeutic implications. Mol Cancer Ther 10:1533-1541. https://doi.org/10.1158/1535-7163.MCT-11-0047
  26. Zafarullah M, Li WQ, Sylvester J, Ahmad MB (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60:6-20. https://doi.org/10.1007/s000180300001
  27. Zou Z, Yuan Z, Zhang Q, Long Z, Chen J, Xu J, Yan H, Wang J, Lin Q (2012) Aurora kinase A inhibitioninduced autophagy triggers drug resistance in breast cancer cells. Autophagy 8:1798-1810. https://doi.org/10.4161/auto.22110