DOI QR코드

DOI QR Code

외생 살리실산과 일산화질소 처리가 고추묘의 저온 내성 및 병 저항성에 미치는 영향

Effect of Exogenous Application of Salicylic Acid or Nitric Oxide on Chilling Tolerance and Disease Resistant in Pepper Seedlings

  • 박송이 (충북대학교 축산.원예.식품공학부 원예학전공) ;
  • 김흥태 (충북대학교 식물의학과) ;
  • 오명민 (충북대학교 축산.원예.식품공학부 원예학전공)
  • Park, Song-Yi (Division of Animal, Horticultural and Food Sciences, Chungbuk National University) ;
  • Kim, Heung-Tae (Department of Plant Medicine, Chungbuk National University) ;
  • Oh, Myung-Min (Division of Animal, Horticultural and Food Sciences, Chungbuk National University)
  • 투고 : 2014.10.31
  • 심사 : 2014.11.17
  • 발행 : 2014.12.31

초록

저온은 식물 생장을 저해하는 주된 요인이며 병원균에 대한 감수성을 증가시킨다. 그러므로 식물체에서 스트레스 내성을 증대시키는 것은 불리한 환경 조건에서 살아남기 위한 중요한 전략이다. 본 실험의 목적은 고추 묘에서 저온 내성과 식물병 발생에 대한 외생 살리실산(SA)과 일산화질소(NO) 처리의 효과를 밝히는 것이다. 정식 후 23일 동안 고추 묘(Capsicum annuum L. '기대만발')는 온도 $20/25^{\circ}C$(낮/밤), 광주기 15시간, 광도 $145{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$의 정상적인 생육환경에서 자랐다. 1주일에 2번 계면활성제 0.1%를 포함한 SA와 NO 3mL을 고추 묘에 각각 분사해주었다. 처리 후 고추 묘는 암 상태에서 6시간 동안 $4^{\circ}C$ 저온에 노출시킨 후 정상적인 생육환경에서 2일 동안 회복시켜주었다. 저온 스트레스에 대한 식물 내성을 평가하기 위해 저온 처리 후 생육특성, 엽록소 형광 값, 세포막 투과성을 측정하였다. 총 페놀릭 농도와 항산화도는 실험하는 동안 측정하였다. 또한, 고추의 점무늬병과 풋마름병 발생 정도도 조사하였다. 저온 처리 전 후를 비교하여 대조구 고추묘에서는 저온에 의해 상대적으로 많은 수분을 손실하여 건물율이 높지만 SA와 NO 처리 된 고추 묘는 비슷한 건물율을 유지하였다. 저온 처리 후 대조구에 비해 SA와 NO 처리구의 전해질 유출 값은 더 낮았다. 저온 처리 동안 SA와 NO 처리구의 엽록소 형광값은 약 0.8 수준으로 유지하였지만 대조구는 빠르게 감소하였다. 화학적 처리 동안 SA 처리구의 총 페놀릭 농도와 항산화도는 NO 처리구보다 높았다. 또한 저온 처리 후 대조구와 NO 처리구의 총 페놀릭 농도는 증가하였다. 고추에서 풋마름병에 대한 저항성은 SA가 보다 효과적이었다. 본 실험의 결과는 SA와 NO의 외생처리는 고추 묘의 저온 내성을 증대시켰고 병 발생 정도를 감소시키는 데 효과적이었음을 보여준다.

As an abiotic stress, chilling stress is one of the major factors limiting plant growth and increasing susceptibility to pathogens. Therefore, enhancing stress tolerance in plants is an important strategy for their survival under unfavorable environmental conditions. The objective of this study was to determine the effects of the exogenous application of salicylic acid (SA) or nitric oxide (NO) on chilling tolerance in pepper seedlings. Pepper (Capsicum annuum L. 'kidaemanbal') seedlings were grown under normal growing conditions ($20/25^{\circ}C$, 15 hours photoperiod, $145{\pm}5{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, fluorescence lamps) for 23 days after transplanting. The solution (3 mL) of 1 mM SA and 0.3 mM NO with surfactant triton 0.1% were sprayed two times a week, respectively. Right after the completion of chemical application, seedlings were subjected to chilling condition at $4^{\circ}C$ for 6 hours under dark condition and then the seedlings were recovered at the normal growing conditions for 2 days. In order to assess plant tolerance against chilling stress, growth characteristics, chlorophyll fluorescence (Fv/Fm), and membrane permeability were determined after chilling stress imposition. Total phenolic concentration and antioxidant capacity were measured during the whole experimental period. Disease incidence for pepper bacterial spot and wilt was also analyzed. Pepper seedlings treated with SA or NO were maintained similar dry mass ratio, while the value in control increased caused by chilling stress suggesting relatively more water loss in control plants. Electrolyte leakage of pepper seedlings treated with SA or NO was lower than that of control 2 days after chilling treatment. Fv/Fm rapidly decreased after chilling stress in control while the value of SA or NO was maintained about 0.8. SA increased higher total phenolic concentration and antioxidant capacity than NO and control during chemical treatment. In addition, increase in total phenolic concentration was observed after chilling stress in control and NO treatment. SA had an effect on the reduction of bacterial wilt in pepper seedlings. The results from this study revealed that pre-treatment with SA or NO using foliar spray was effective in chilling tolerance and the reduction of disease incidence in pepper seedlings.

키워드

참고문헌

  1. Baker, N.R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55:1607-1621. https://doi.org/10.1093/jxb/erh196
  2. Campos, P.S., V. Quartin, J.C. Ramalho, and M.A. Nunes. 2003. Electrolyte leakage and lipid degradation account for cold sensitivity in leaves of Coffea sp. plants. J. Plant Physiol. 160:283-292. https://doi.org/10.1078/0176-1617-00833
  3. Dang, F., Y. Wang, J. She, Y. Lei, Z. Liu, T. Eulgem, Y. Lai, J. Lin, L. Yu, D. Lei, D. Guan, X. Li, Q. Yuan, and S. He. 2013. Overexpression of CaWRKY27, a subgroup IIe WRKY transcription factor of Capsicum annuum, positively regulates tobacco resistance to Ralstonia solanacearum infection. Physiol. Plant. 150:397-411.
  4. Elwan, M.W.M., and M.A.M. El-Hamahmy. 2009. Improved productivity and quality associated with salicylic acid application in greenhouse pepper. Sci. Hort. 122:521-526. https://doi.org/10.1016/j.scienta.2009.07.001
  5. Esim, N.T. and O. Atici. 2014. Nitric oxide improves chilling tolerance of maize by affecting apoplastic antioxidative enzymes in leaves. Plant Growth. Regulat. 72:29-38. https://doi.org/10.1007/s10725-013-9833-4
  6. Eulgem, T. and I.E. Somssich. 2007. Networks of WRKY transcription factors in defense signaling. Curr. Opinion Plant Biol. 10:366-371. https://doi.org/10.1016/j.pbi.2007.04.020
  7. Gouvea, C.M.C.P., J.F. Souza, A.C.N. Magalhaes, and I.S. Martins. 1997. NO-releasing substances that induce growth elongation in maize root segments. Plant Growth. Regulat. 21:183-187. https://doi.org/10.1023/A:1005837012203
  8. Heo, C.M. 2011. Physiological changes induced by temperature stress in poplar. Master thesis. Gyeongsang National University.
  9. Janda, T., G. Szalai, I. Tari, and E. Paldi. 1999. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize plants. Planta 208:175-180. https://doi.org/10.1007/s004250050547
  10. Joe, J.Y. 2002. Study on the production of isoflavone in the plant cell cultures of Pueraria mirifica using cyclodextrin and elicitors. Master thesis. Kangwon National University. (in Korean)
  11. Kang, G., C. Wang, G. Sung, and Z. Wang. 2003. Salicylic acid changes activities of $H_2O_2$-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environ. Expt. Bot. 50:9-15. https://doi.org/10.1016/S0098-8472(02)00109-0
  12. Khan, W., P. Balakrishnan, and L.S. Donald. 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. J. Plant Physiol. 160:485-492. https://doi.org/10.1078/0176-1617-00865
  13. Kim. H.Y. 2007. In vitro mass propagation of Oplopanax elatus Nakai and biological activities by using elicitor. Master thesis. Kangwon National University. (in Korean)
  14. Kim, S.A. and S.R. Kwang. 2014. Effect of p-coumaric acid, benzoic acid, and salicylic acid on the activity of glutathione reductase and catalase in in vitro grown tobacco plants. J. Life Sci. 24:227-233. https://doi.org/10.5352/JLS.2014.24.3.227
  15. Kim, Y.B., J.H. Kim, and M.H. Park. 2011. Effects of supplemental lighting on growth and yield of pepper (Capsicum annuum L.) in hydroponic culture under low levels of natural light in winter. Kor. J. Hort. Sci. Technol. 29:317-325. (in Korean)
  16. Kim, Y.H. 2009. Salt-stress tolerance of rice (Oryza sativa L.) and cucumber (Cucumis sativus L.) affected by nitrogen and salicylic acid. Master thesis. The University of Seoul. (in Korean)
  17. Kroon, P.A. and G. Williamson. 1999. Hydroxycinnamates in plants and food: current and future perspectives. J. Sci. Food Agric. 79:355-361. https://doi.org/10.1002/(SICI)1097-0010(19990301)79:3<355::AID-JSFA255>3.0.CO;2-G
  18. Kwon, S.T. and S.M. Oh. 1999. Elicitor inducible phytoalexin from cell suspension culture of pepper. Kor. J. Life. Sci. 9:408-413. (in Korean)
  19. Lee, J.G., J.W. Lee, S.H. Park, Y.A. Jang, S.S. Oh, T. C. Seo, H.K. Yoon, and Y.C. Um. 2011. Effect of low night-time temperature during seedling stage on growth of spring Chinese cabbage. J. Bio-Environ. Con. 20:326-332.
  20. Lee, J.H., S.W. Kwon, M.J. Uhm, J.J. Lee, and Y.J. Song. 2011. Effects of eco-friendly materials treatment of raising seedlings before transplanting on growth and development of pepper. Kor. J. Hort. Sci. Technol. 29 (SUPPL. I). (in Korean)
  21. Lee, J.S. 1999. The effect of salicylic acid on the photosynthetic activity in Commelina communis L. Kor. J. Environ. Biol. 17:359-364.
  22. Lee, S.H., I.H. Heo, K.M. Lee, S.Y. Kim, Y.S. Lee, and W.T. Kwon. 2008. Impacts of climate change on phenology and growth of crops: In the case of Naju. J. Kor. Geo. Soc. 43:20-35. (in Korean)
  23. Mahdavian, K., M. Ghorbanli, and K.M. Kalantari. 2008. Role of salicylic acid in regulating ultraviolet radiation-induced oxidative stress in pepper leaves. Russian J. Plant Physiol. 55: 560-563. https://doi.org/10.1134/S1021443708040195
  24. Miller, N.J. and C.A. Rice-Evans. 1996. Spectrophotometric determination of antioxidant activity. Redox report 2:161-171.
  25. Mutlu, S., O. Atici, and B. Nalbantoglu. 2009. Effects of salicylic acid and salinity on apoplastic antioxidant enzymes in two wheat cultivars differing in salt tolerance. Biologia. Plant. 53:334-338. https://doi.org/10.1007/s10535-009-0061-8
  26. Neill, S.J., R. Desikan, and J.T. Hancock. 2003. Nitric oxide signaling in plants. New Phytologist 159:11-35. https://doi.org/10.1046/j.1469-8137.2003.00804.x
  27. Oh, S.J. 2002. Studies on the changes in antioxidative enzyme activities and chlorophyll fluorescence parameters in a subtropical plant, Crinumasiaticum var. japonicum under low temperature stress. PhD Diss., Jeju National University. (in Korean)
  28. Oh, S.S. 2009. Effects of night temperature and electrical conductivity on the growth and physiological response of grafted pepper seedling in protected cultivation. PhD Diss., Gyeongsang National University. (in Korean)
  29. Pandey S.P. and I.E. Somssich. 2009. The role of WRKY transcription factors in plant immunity. Plant Physiol. 150:1648-1655. https://doi.org/10.1104/pp.109.138990
  30. Park, E.J., Y. Heo, B.G. Son, Y.W. Choi, Y.J. Lee, Y.H. Park, J.M. Suh, J.H. Cho, C.O. Honh, S.G. Lee, and J.S. Kang. 2014. The Influence of abnormally low temperatures on growth and yield of hot pepper (Capsicum annuum L.). J. Environ. Sci. Intl. 23:781-786. (in Korean) https://doi.org/10.5322/JESI.2014.5.781
  31. Rivero, R.M., J.M. Ruiz, P.C. Garcia, L.R. Lopez-Lefebre, E. Sanchez, and L. Romero. 2001. Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 160:315-321. https://doi.org/10.1016/S0168-9452(00)00395-2
  32. Sayyari, M. 2012. Improving chilling resistance of cucumber seedlings by salicylic acid. Amer-Eurasian. J. Agric. Environ. Sci. 12:204-209.
  33. Sayyari, M., F. Ghanbari, S. Fatahi, and F. Bavandpour. 2013. Chilling tolerance improving of watermelon seedling by salicylic acid seed and foliar application. Not. Sci. Biol. 5:67-73.
  34. Saddiqui, M.H., M.H. Al-Whaibi, and M.O. Basalah. 2011. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 248:447-455. https://doi.org/10.1007/s00709-010-0206-9
  35. Son, K.H. and M.M. Oh. 2013. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48:988-995.
  36. Uchida, A., A.T. Jagendorf, T. Hibino, T. Takabe, and T. Takabe. 2002. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci. 16:515-523.
  37. Wendehenne, D., J. Durner, and D.F. Klessig. 2004. Nitric oxide: a new player in plant signaling and defence responses. Curr. Opinion Plant Biol. 7:449-455. https://doi.org/10.1016/j.pbi.2004.04.002
  38. Wu, C.H., R.K. Tewari, E.J. Hahn, and K.Y. Paek. 2007. Nitric oxide elicitation induces the accumulation of secondary metabolites and antioxidant defense in adventitious roots of Echinacea purpurea. J. Plant Biol. 50:636-643. https://doi.org/10.1007/BF03030607
  39. Yang, E.Y., C.S. Choi, M.C. Cho, H.B. Jeong, S.Y. Chae, S.O. Jang, and H.S. Choi. 2009. Determination of critical temperature to pepper seedlings in a cold season. Kor. J. Hort. Sci. Technol. 27 (SUPPL. I). (in Korean)
  40. Yang, H., F. Wu, and J. Cheong. 2011. Reduced chilling injury in cucumber by nitric oxide and the antioxidant response. Food Chem. 127:1237-1242. https://doi.org/10.1016/j.foodchem.2011.02.011
  41. Yeoung, Y.R., J.Y. Jeon, and S.Y. Shim. 2002. Characteristics of root development and seedling quality during pepper seedling growth in copper-coated plug trays. J. Kor. Soc. Hort. Sci. 43:151-154. (in Korean)
  42. Yordanova, R., and L. Popova. 2007. Effect of exogenous treatment with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. Gen. Appl. Plant Physiol. 33:155-170.
  43. Zhao, L., H. Wang, and L. Zhang. 2008. Nitric oxide protects against polyethylene glycol-induced oxidative damage in two ecotypes of reed suspension cultures. J. Plant Physiol. 165:182-191. https://doi.org/10.1016/j.jplph.2007.03.002
  44. Zielinski, H. and H. Kozlowska. 2000. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J. Agric. Food Chem. 48:2008-2016. https://doi.org/10.1021/jf990619o