DOI QR코드

DOI QR Code

쉴드 터널용 프리캐스트 세그먼트 콘크리트 라이닝의 내화성능

Fire Resistance Performance of Precast Segmental Concrete Lining for Shield Tunnel

  • 투고 : 2013.11.12
  • 심사 : 2013.12.16
  • 발행 : 2014.02.01

초록

철근콘크리트 쉴드 터널 라이닝은 대형화재 등과 같은 고온에 노출될 경우, 구조체에의 급격한 온도 전달 및 내하력 저하로 구조체 붕괴의 원인이 될 수 있기 때문에 내화성능을 확보해야 한다. 이 연구는 쉴드터널의 프리캐스트 RC 세그먼트 라이닝에 대한 내화성능을 평가하고자 실험/해석적 연구를 수행하였다. 실험적 연구에서는 프리캐스트 RC 세그먼트내의 열적 취약부위를 실험변수로 하여 6개의 실 대형 실험체에 대한 내화실험을 실시하였으며, 화재조건은 RABT 곡선에 의한 온도이력을 이용하였다. 내화실험결과 이 연구에서 제시된 쉴드형 터널의 PP섬유 혼입콘크리트 충전부위는 폭렬이 발생하지 않는 우수한 내화성능을 나타내었다. 해석적 연구에서는 온도의존성을 고려한 재료의 열특성을 고려하여 비정상 유한요소 온도분포해석 기법을 이용하였는데, 실험결과를 잘 모사하는 것으로 검증되었다.

Reinforced concrete (RC) shield tunnel lining must be designed for fireproof performance because the lining is sometimes exposed to very high temperature due to traffic accidents. Both experimental and numerical studies are carried out to evaluate fire resistance performance of precast RC tunnel lining systems. In the experimental studies, six full-scale precast RC tunnel segments are exposed to fire in order to examine the influence of various parameters on the fire resistance performance of precast RC tunnel lining. We used the temperature curve of the RABT criteria, which are severe conditions of fire temperatures. The fire test showed that the explosive spalling was not observed by substituting concrete to PP fiber reinforced concrete. A transient heat flow analysis was carried out in consideration of the material properties that change with temperature, and the results showed good agreement with the test results.

키워드

참고문헌

  1. Eurocode2 (1996). "Design of concrete structures part 1, 2 general rules-structural fire design." DO ENV 1992.
  2. Han, B. C., Kwon, Y. J. and Kim. J. H. (2007). "Behavior of fire resistance engineered cementitious composites (FR-ECC) under fire temperature." Journal of the Korea Concrete Institute, KCI, Vol. 19, No. 2, pp. 189-197 (in Korean). https://doi.org/10.4334/JKCI.2007.19.2.189
  3. Haukur, I. and Anders, L. (2004). "Recent achievements regarding measuring of time-heat and time-temperature development in tunnel." Safe & Tunnels, 1st International Symposium, Prague, pp. 87-96.
  4. JSCE (2004). Fire resistance performance of Concrete Structures, Fire Resistance Committee Report, Japan Society of Civil Engineers, p. 292 (in Japanese).
  5. Kazunori, H. (1992). A study on prediction of temperature rise in concrete for fire resistance test, Ph.D. Dissertation, Kyoto University, Kyoto, Japan (in Japanese).
  6. Kazunori, H. (1992). A study on the evaluation of temperature distribution in concrete sujected to fire loading, Ph.D. Dissertation, Kyoto University, Kyoto, Japan (in Japanese).
  7. Kim, J. H., Park, H. G., Won, J. P. and Lim, Y. M. (2006). "Study of fire proof performance for newly developed fire protection material coated RC tunnel lining." Proceeding of The Korean Society of Civil Engineers, KSCE, pp. 1569-1572 (in Korean).
  8. Lee, D. S., Bae, J., Choi, H. and Min, I. G. (2013). "Experimental study on the fire proofing characteristic of fire resistance panel that it attaches to PSC airpit-slab." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 33, No. 2, pp. 465-473 (in Korean). https://doi.org/10.12652/Ksce.2013.33.2.465
  9. Park, H. G., Lee, S. B., Lee, M. S. and Kim, J. K. (2003). "Research of fire-resistance characteristics for shield tunnel." Proceeding of Annual Conference & Civil Expo, KSCE, pp. 4801-4804 (in Korean).
  10. Won, J. P., Choi, S. W., Park, C. G. and Park, H. G. (2006). "Temperature distribution of wet-mixed high strength sprayed polymer mortar for fire resistance of tunnel." Journal of The Korean Society of Civil Engineers, KSCE, Vol. 26, No. 4C, pp. 283-290 (in Korean).